Regulating for the management of Seaworthiness
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM MANUAL

This manual refers to Defence Administrative Policy ME2 – Defence seaworthiness management system

MJ Noonan, AO
Vice Admiral, RAN
Defence Seaworthiness Authority
Department of Defence
CANBERRA ACT 2600
04 December 2018
AMENDMENT CERTIFICATE

<table>
<thead>
<tr>
<th>Amendment number</th>
<th>Chapter(s)</th>
<th>Amendment</th>
<th>Effected date</th>
</tr>
</thead>
</table>
| 1 | All | • Minor amendments throughout including clarification on issue resolution and removal of waivers
 • Addition of Volume 3 detailing Activity and Condition Based Compliance Obligations | 26 Jun 17 |
| 2 | All | • Minor amendments throughout | 27 Oct 17 |
| 3 | All | • Minor amendments throughout | 04 Dec 18 |
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM MANUA

First Issued: 21 March 2017

Reissued Issued: 04 December 2018

Issued by: M J Noonan, VADM, RAN DSwA

Document management: This manual will be reviewed two years from the date of issue but sooner if necessitated by business requirements and to ensure it continues to meet the intent of Defence’s policy.

Availability: The latest version of this manual is only available from http://intranet.defence.gov.au/home/documents/data/DEFPUBS. Its currency cannot be guaranteed if sourced from other locations. It is available for public release.

Policy domain:

Accountable officer: Defence Seaworthiness Regulator (DSwR)

Policy owner: Defence Seaworthiness Authority (DSwA)

Policy contact: Executive Director, Office of Defence Seaworthiness Regulator Email: dswms@defence.gov.au

Purpose: This manual sets out the Defence Seaworthiness Management System. It establishes an enterprise wide system of control, through regulations for the management of hazards and risks in the achievement of maritime outcomes required by Defence. It informs actions and decision, on the nature and scope of employment of mission systems including but not limited to: ships, submarines, powered and non-powered vessels of any size, diving systems, unmanned underwater vehicles including remotely operated systems and water borne drones. The Defence seaworthiness management system provides the framework and the policies and procedures that guide Defence personnel to make informed decisions that comply with relevant Commonwealth and state/territory legislation.

Structure: See Contents

Cancellation:
Definitions: Definitions that apply to this manual are in the Glossary.

Scope and applicability: This manual is an administrative policy framework document (framework document) and applies to all Defence personnel.

The terms of a relevant contract may extend the application of this manual to a contractor, consultant or outsourced service provider.

The Secretary and the CDF require Defence personnel to comply with provisions in manuals unless the particular circumstances warrant departure from the provisions.

Some provisions in policies and manuals support Defence personnel to comply with obligations that exist in applicable laws, the Defence Enterprise Agreement, directives and determinations issued under the Public Service Act 1999 or the Defence Enterprise Agreement, or in this Instruction. Defence personnel must not depart from manual or policy provisions in a way that would result in any breach of applicable laws, the Defence Enterprise Agreement, directives and determinations issued under the Public Service Act 1999 or the Defence Enterprise Agreement or this manual.

When considering a possible departure from a manual the Secretary and the CDF require Defence personnel to:

a. consider whether the proposed departure would be inconsistent with applicable laws, the Defence Enterprise Agreement, directives and determinations issued under the Public Service Act 1999 or the Defence Enterprise Agreement or in Defence Instructions. If yes, the departure is not permitted

b. consider whether a proposed departure from the provisions is reasonable and justified in the circumstances and will produce a better outcome for Defence

c. consult their supervisor, wherever practicable, about a proposed departure – a properly informed decision also involves consulting the policy owner

d. be responsible and accountable for the consequences of departing from, or not adhering to, the content of a manual including where such departure or non-adherence results in a breach of applicable laws or leads to adverse outcomes for Defence.

Defence personnel may be subject to performance management, administrative action, or in some circumstances disciplinary action, where decisions or actions that depart from, or do not adhere to, manual provisions involve serious errors of judgement.
Failure to adhere to administrative policy may result in a breach of legislation or other legal requirement and sanctions under that legislation may apply.

Defence personnel who are authorised by the Secretary to execute contracts on behalf of the Commonwealth should consider whether there is a specific and documented reason to include in the terms of a contract the requirement for contractors, consultants and outsourced service providers to comply with the provisions of this manual and, if so, include such terms.
Operating innovatively and flexibly is crucial if Defence Groups and Services are to prosper in contemporary society and I am pleased that the Defence Seaworthiness Management System (DSwMS) supports the Defence organisation to do just that. The system requires Capability Managers to define how they will deliver the required operational outcome, what they need to deliver it, and the information needed to make decisions on the seaworthiness of their mission systems across the Capability Life Cycle.

DSwMS requires a systematic approach to the management of seaworthiness and justified confidence that maritime mission systems are able to respond to government tasking and operational activities while the hazards to our personnel, the public and the environment are risk managed.

DSwMS defines accountabilities and introduces independent layers of assurance between the Capability Manager and the Seaworthiness Regulator to provide me with confidence in the seaworthiness of all registered Defence Vessels.

This manual sets out the DSwMS and provides the framework, policies and procedures that guide all Defence and Industry personnel to deliver a lethal seaworthy Defence maritime capability.

MJ Noonan, AO
Vice Admiral, RAN
Defence Seaworthiness Authority

Department of Defence
CANBERRA, ACT 2600

04 December 2018
CONTENTS

Volume 1: System Description, Operation and Administration
Volume 2: Defence Seaworthiness Management System Manual Governance and Management Compliance Obligations
Volume 3: Defence Seaworthiness Management System Manual Activity and Condition Based Compliance Obligations
Volume 4: Independent Seaworthiness Management Review
Glossary
VOLUME 1: SYSTEM DESCRIPTION, OPERATION AND ADMINISTRATION

Contents

Part 1: System Description, Operation and Administration
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
PART 1: SYSTEM DESCRIPTION, OPERATION AND ADMINISTRATION
CONTENTS

Chapter 1

The Defence Seaworthiness Management System overview and key concepts

1–1

Introduction
1–1

Aim
1–2

Glossary
1–2

Defence Seaworthiness Management System aim (policy statement)
1–4

The Seaworthiness Argument
1–4

Application of Defence Seaworthiness Management System
Compliance Obligations – Graphical Representation
1–6

Operational effect and the operating and support intent
1–7

Operational effect and the operating intent
1–7

The support intent
1–8

The Capability Manager’s operating and support intent
1–8

Baselining of the operating and support intent
1–9

Defined tasking
1–10

Defence Seaworthiness Management System and capability management
1–16

Chapter 2

Defence Seaworthiness Management System governance arrangements

2–1

Introduction
2–1

Aim
2–1

Glossary
2–1

Seaworthiness governance
2–1

Principles for governance of seaworthiness
2–2

Governance model for seaworthiness
2–3

Decision rights and accountabilities for seaworthiness
2–5

Regulator
2–5

Regulated
2–6

Accountability management for seaworthiness
2–7

Accountabilities
2–7

Issue resolution and escalation
2–7

Enforcement
2–9

Chapter 3

Defence Seaworthiness Management System Regulatory Framework

3–1

Introduction
3–1

Aim
3–1

Glossary
3–1

Defence Seaworthiness Management System Regulatory Framework – Purpose
3–1

Defence Seaworthiness Management System Regulatory Framework – design concept
3–2

Risk and the Defence Seaworthiness Management System Regulatory Framework
3–2

Outcome-focused and goal-based regulation
3–2
Detailed structure of the Defence Seaworthiness Management System Regulatory Framework 3–4
Governance and Management Compliance Obligations 3–5
Activity and Condition Based Compliance Obligations 3–7
Compliance with the Defence Seaworthiness Management System Regulatory Framework 3–8
Means of compliance 3–8
Developing a compliance strategy 3–10
Administration of Defence Seaworthiness Management System Compliance Obligations 3–10
Annex 3B 3A–1
Outcome-focused goal-based regulation 3A–1
Annex 3B 3B–1
Defence Seaworthiness Management System Compliance Obligations overview and functional relationship 3B–1
Annex 3C 3C–1
Activity and Condition Based Compliance Obligation development methodology, structure and use 3C–1

Chapter 4 4–1
Defence Seaworthiness Management System Risk Management and Assurance Framework 4–1
Introduction 4–1
Aim 4–1
Glossary 4–2
Defence Seaworthiness Management System Risk Management and Assurance Framework – Purpose 4–2
Defence Seaworthiness Management System Risk Management and Assurance Framework – design concept 4–2
The ‘three lines of defence’ approach to hazard and risk management and assurance 4–2
Risk management context 4–4
Defence Seaworthiness Management System risk taxonomy 4–5
Hazard/risk control 4–7
Assurance context 4–8
Application 4–9
Defence Seaworthiness Management System assurance and due diligence 4–9
Defence Seaworthiness Management System assurance and reporting 4–11
First line of defence 4–11
Second line of defence 4–12
Third line of defence 4–13
Annex 4A 4A–1
The Defence Seaworthiness Management System risk taxonomy 4A–1

Chapter 5 5–1
Defence Seaworthiness Management System operating model 5–1
Introduction 5–1
Aim 5–1
Glossary 5–1
Defence Seaworthiness Management System Operating Model – purpose 5–1
Defence Seaworthiness Management System Operating Model – design concept and core principles 5–1
The Defence Seaworthiness Management System Operating Model – design concept 5–1
The Defence Seaworthiness Management System Operating Model 5–2
Process 1 – Define compliance requirements 5–3
Process 2 – Develop and maintain compliance strategy 5–5
Process 3 – Develop assurance plan (regulated) 5–8
Process 4 – Develop Assurance Master Plan (Regulator) 5–10
Process 5 – Provide assurance (regulated) 5–11
Process 6 – Provide Assurance (Regulator) 5–12
Process 7 – Provide education 5–13
Process 8 – Provide advice 5–14
Process 9 – Issue resolution and escalation 5–15
Process 10 – Demonstrate value and continuously improve 5–16
The seaworthiness case 5–18
CHAPTER 1
THE DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM
OVERVIEW AND KEY CONCEPTS

INTRODUCTION

1.1 The Defence Seaworthiness Management System (DSwMS) comprises three complementary and aligned components represented in Figure 1–1:

a. The DSwMS Regulatory Framework, which articulates compliance obligations expressed as outcomes with associated function and performance requirements, and which must be satisfied to build confidence that hazards and risks to the Seaworthiness Outcome are being controlled. This framework consists of regulations of two types:

(1) An enterprise type that controls risks inherent in governance and management activities as they relate to achieving the Seaworthiness Outcome. Regulations of this type are referred to as ‘Governance and Management Compliance Obligations’ (GMCOs). These regulations are contained in Volume 2 of the DSwMSMAN.

(2) A type specific to a maritime mission system and its enabling support system. This type controls hazards and risks inherent in specific mission and enabling support systems. Regulations of this type are referred to as ‘Activity and Condition Based Compliance Obligations’ (ACCOs). These regulations are contained in Volume 3 of the DSwMSMAN. The methodology for developing and applying ACCOs is contained in Volume 1, Part 1 Annex 3C of the DSwMSMAN.

b. The DSwMS Risk Management and Assurance Framework, which describes the enterprise risk management context, establishes clear accountabilities for compliance with the obligations, and through assurance provides supporting evidence to justify confidence that hazards and risks to the Seaworthiness Outcome are being effectively managed. The Risk Management and Assurance Framework is based on the enterprise risk governance concept of three lines of defence, which provides a formal structure to support risk-based decision making and oversight in complex enterprises/undertakings. Organisations are aligned along three lines where risk ownership is clearly identified, and functionally independent levels of risk oversight and assurance are provided. The first line comprises the business and operations management where risks are managed on a day-to-day basis. The second line comprises the systems of control which act on the first line (including provision of supporting systems). The third line comprises enterprise-wide controls in response to objectives and outcomes required by the enterprise, related government direction and legislation. The Risk Management and

1 For example risk exists where governance and management activities: (a) are not suitable (not aligned, or do not produce the outcome to the specified performance requirement); (b) are suitable but are not followed (not available/not aware, training and competency inadequate etc); (c) are suitable but not adequately resourced.
Assurance Framework is discussed in Volume 1, Part 1, Chapter 4 of the DSwMSMAN.

c. The DSwMS Operating Model, which ensures the frameworks are developed, maintained and applied in a mindful and systematic manner through a series of core processes conducted by both the Defence Seaworthiness Regulator (DSwR - the single regulator of the DSwMS) and the regulated. The Regulatory Framework is enacted by the Regulator through process 1 of the Operating Model. This provides the means for the regulator to assess the requirement for and development of regulatory controls. The regulated community respond to the regulations through the development of a compliance strategy as articulated in process 2 of the Operating Model. Assurances of compliance against the regulations are provided through processes three to six. The remaining processes ensure that the system as a whole remains coherent, and improves as necessary over time. The Operating Model is discussed in Volume 1, Part 1, Chapter 5 of the DSwMSMAN.

1.2 Collectively, these components create an enterprise wide system for control, through regulation, of hazards and risks to the Seaworthiness Outcome throughout the Capability Life Cycle (CLC).

AIM

1.3 This chapter describes the key concepts and principles underpinning the Defence Seaworthiness Management System.

GLOSSARY

1.4 Definitions, acronyms and abbreviations relevant to the DSwMSMAN are detailed in the Glossary.
Figure 1–1 Defence Seaworthiness Management System components

- Due diligence
- Risk Management and Assurance Framework
- Risk-based Operating Model
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM AIM
(POLICY STATEMENT)

1.5 The Seaworthiness Outcome is articulated through the following policy statement.

1.6 The DSwMS aims to ensure that the operation of a maritime mission system, in accordance with its Capability Manager’s operating and support intent and enabled by its support system:

a. maximises the likelihood of achieving the specified operational effect for the defined tasking, where

b. efforts have been made to eliminate or minimise so far as is reasonably practicable (SFARP), hazards/risks\(^2\) to personnel, the public and the environment.

1.7 Consistent with the conditions as articulated through the policy statement above, the maximum likelihood of a realised system being able to achieve the specified tasking occurs where the operating and support intent (OSI) is clearly understood and articulated, hazards and risks are eliminated or minimised in context of the OSI, and the system is operated as intended.\(^3\) Where these conditions are satisfied, the Seaworthiness Outcome has been achieved.

1.8 Note therefore that achievement of the Seaworthiness Outcome is not achievement of the specified operational effect. The latter is the role and responsibility of capability management and operations. Moreover, it is the case that circumstances may arise where the actual requirement to undertake a task does not eventuate (e.g., actual use of a weapon system in anger). However, maximising the likelihood that the operational effect can be achieved when required is the prime consideration and objective of the DSwMS.

1.9 The concepts above are described in detail through a graphical representation later in this chapter.

THE SEAWORTHINESS ARGUMENT

1.10 The DSwMS uses formal claims, arguments and evidence to make the case that the Seaworthiness Outcome is achieved for both specific mission systems and across the enterprise as a whole. The Seaworthiness Argument is expressed at the top level as follows:

If:

a. the specified operational effect is interpreted, defined and formally articulated by the Capability Manager through an OSI

b. and the design and OSI remain aligned and understood throughout the CLC

\[^2\text{Risks to safety and the environment, and the management of them, are defined and contextualised by both the undertaking and applicable legislation.}\]

\[^3\text{This is consistent with the notion of a system being ‘Fit for the Intended Purpose’.}\]
c. and a maritime mission system and its enabling support system are realised consistent with the design such that hazards/risks to personnel, the public and the environment are eliminated or minimised SFARP.\(^4\)

d. and all defined tasks can occur within the boundaries of the OSI (ie within the boundaries of realised systems when operated and supported as intended)

then the likelihood of achieving the specified operational effect is maximised for the defined tasking(s) and hazards and risks to personnel, the public and the environment are eliminated or, where elimination is not practicable, minimised SFARP (ie the Seaworthiness Outcome is achieved).

1.11 The DSwMS components in Figure 1–1 collectively act with the aim to ensure the conditions articulated in the Seaworthiness Argument above are satisfied; and that sufficient evidence exists against the argument to support the claim with justified confidence. In this context the ‘Argument’ is provided through development of compliance strategies as articulated in process 2 of the Operating Model. The assurance requirements are planned, and evidence collected through processes 3 to 6 of the Operating Model. A case for seaworthiness is made once the evidence from assurance is presented in the context of the compliance strategy and, where required, necessary actions for remediation are taken.

1.12 By defining the OSI based on the full range of operational effects required during the in-service phase of the CLC, the Capability Manager has articulated what needs to be achieved by the ideal solution.

1.13 The OSI is not one document, but is a collective term that refers to the evolution of both the operating intent and the support intent throughout the CLC. As more information becomes available, the OSI will evolve. For example, an operational concept along with a broad logistics support concept might constitute an OSI in an early phase of the CLC. As more information becomes available, constraints are better understood and requirements are more formally defined; a functional performance specification along with a logistics support plan, workforce plan and training plan might constitute the OSI. Further evolution of the OSI might lead to a formal statement of operating intent with a supportability statement, which becomes a baselined set of documents prior to transition to in-service. The maritime mission system is then expected to operate within this OSI throughout its in-service phase.

1.14 To meet the OSI, a solution must satisfy certain preconditions in order to perform activities that are required to achieve the defined taskings (for example, conditions such as hull integrity, speed, manoeuvrability and stability). The activities, and the systems required to accomplish them, present hazards and risks to personnel, the public and the environment. To maximise the likelihood that a solution will achieve the specified operational effect for the defined tasking, the activities and systems must function and perform as required. This includes ensuring that the associated hazards and risks are controlled SFARP. On realisation of a maritime mission system, where it is delivered complete with hazard and risk controls in effect,

\(^4\) Elimination, or minimisation so far as reasonably practicable, of hazards and risks is achieved by the implementation of controls.
and on use as intended; the Seaworthiness Argument will be satisfied. Therefore it is reasonable to expect that the Seaworthiness Outcome will be met.

1.15 The management of hazards and risks is effected through the application of controls. The DSwMS therefore regulates to ensure appropriate controls are applied throughout the CLC to assure the Seaworthiness Outcome.

1.16 In all cases it is expected that the Capability Manager will understand what is expected of a maritime mission system, what the design can actually achieve, and any gaps between the two that must be managed. Without a thorough understanding of what is expected, sufficient context cannot be established to identify the appropriate hazard and risk controls.

APPLICATION OF DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM COMPLIANCE OBLIGATIONS – GRAPHICAL REPRESENTATION

1.17 The concepts described above are simple in nature, and may be summarised as:

a. know what you want a mission system to do and how you intend to support it (taking account of hazards and risks to safety of personnel, the public and the environment, in this context)

b. ensure the mission system design can deliver functions and performance aligned with the operating and support intent

c. ensure the mission system is built or acquired (realised) to the designed functional and performance specifications

d. operate the mission system within the designed functional and performance specifications.

1.18 In the context of the paragraph above, a mission system and enabling support system comprise all fundamental inputs to capability elements necessary to satisfy the OSI. Functions and performance refers to all contributing elements.

1.19 The concepts are described graphically below in Figure 1–2 in the Defence context.

1.20 Figure 1–2 provides a graphical basis for a discussion of how this policy statement applies in the context of seaworthiness management; it is further expanded upon in the later figures and descriptive paragraphs.

5 Controls can, for example, be: (a) inherent in the system design (engineered solutions); (b) in the associated safe systems of work (training and competencies, orders, instructions and publications); (c) applied through local risk management arrangements and systems.
Figure 1–2 Context for Seaworthiness Management

Note: This diagram presents conceptual components of an OSI. In no way does it presuppose solutions that a Capability Manager may present as the OSI in any particular life cycle phase. In this example the abbreviations stand for:

- CNS – Capability Needs Statement
- OCD – Operational Concept Document
- FPS – Functional and Performance Specification
- OCS – Operational Concept Statement
- LSC – Logistic Support Concept
- ILSP – Integrated Logistics Support Plan
- SOI – Statement of Operating Intent
- MSSS – Mission System Supportability Statement

OPERATIONAL EFFECT AND THE OPERATING AND SUPPORT INTENT

1.21 The operating intent is generated from a strategic view of the operational effect(s) a maritime mission system may need to achieve, or contribute to, throughout its in-service phase. It is an articulation of what Defence expects, or ‘wants’, a maritime mission system to be able to do.
1.22 The specified operational effects, and the related capability need, come from the Capability Manager’s interpretation of strategic guidance. Examples of strategic guidance include, but are not limited to:

- Defence white paper/Defence planning guidance
- Chief of the Defence Force preparedness directives
- Service strategies (eg the Chief of Navy’s strategy)
- Government-directed capability solutions – eg a particular type of ship, or choice of manufacturer/design.

THE SUPPORT INTENT

1.23 The support intent is the Capability Manager’s definition of what is required to support the achievement of the operating intent and must evolve, in concert with the operating intent, throughout the CLC. A maritime mission system is enabled through its support system, which is defined and resourced throughout the CLC. Without a suitable, maintained support system, the likelihood of achieving the specified operational effect is significantly reduced (ie is not maximised).

THE CAPABILITY MANAGER’S OPERATING AND SUPPORT INTENT

1.24 The operating intent and support intent are collectively referred to as the Capability Manager’s OSI.

1.25 The preceding discussion is highlighted in Figure 1–3.

Figure 1–3 Operational effect and the operating and support intent
BASELINING OF THE OPERATING AND SUPPORT INTENT

1.26 Throughout the acquisition phase of the CLC, trade-offs are made for reasons including, but not limited to:
 a. procurement method/acquisition strategy (e.g., military off-the-shelf/commercial off-the-shelf)
 b. government direction, including directed solutions
 c. resource constraints
 d. limited availability of solutions/technology
 e. inability of the contractor to deliver to specification
 f. system integration/interoperability shortcomings.

1.27 There is a need to consider and understand the impacts to the Seaworthiness Outcome of these trade-offs and manage hazards and risks to the achievement of the Seaworthiness Outcome accordingly.

1.28 As the resulting post-trade-offs solution (a maritime mission system) enters service, its OSI is ‘baselined’. This constitutes the ‘left and right of arc’ of what the mission system ‘can do’ at that point in time (i.e., actual functions and performance) and is highlighted in Figure 1–4.

Figure 1–4 Baselined operating and support intent

1.29 Once a maritime mission system enters service, its OSI is underpinned by the:
 a. configuration baseline
b. life-of-type

c. maintenance and support regime.

1.30 Ongoing review of the OSI by the Capability Manager must continue until the eventual disposal of the maritime mission system, with the OSI evolving to reflect necessary changes in a timely manner. All such changes must be effectively communicated to all affected stakeholders.

DEFINED TASKING

1.31 Strategic requirements are translated into operational and tactical plans that govern what a maritime mission system ‘will do’ over the immediate time horizon (generally two years). This constitutes the defined tasking.

1.32 The Seaworthiness Outcome is achieved where the defined tasking is within the boundaries of the extant OSI; refer to Figure 1–4.

1.33 If what a maritime mission system ‘will do’ (defined tasking) exceeds what it ‘can do’ (extant OSI):

a. In the case of a discrete activity, the activity must be deliberately risk-managed in accordance with seaworthiness risk management policy. These circumstances should be an exception, rather than the rule, under the DSwMS.

b. In all cases consideration must be given to any long-term implications and the requirement for formal change to any or all of the:

 1. configuration baseline
 2. life-of-type
 3. maintenance and support regime
 4. extant OSI.

1.34 Examples of what a maritime mission system ‘will do’ exceeding what it ‘can do’ include:

a. configuration baseline:

 1. supporting an operation that requires a maritime mission system to have anti-ship missile defence capability it does not possess, thus entailing a configuration change
 2. being required to provide temporary mortuary facilities, when such facilities are not part of the configuration baseline
 3. an emergent requirement to routinely provide carriage for additional personnel, where accommodation, hotel services, etc were never intended for such purposes
 4. non-compliance with emergent requirements as articulated in new regulation (eg emission standards)

b. life-of-type:

 1. a maritime mission system intended to deliver 150 sea days annually subsequently required to deliver 300
(2) the life-of-type of a maritime mission system is extended from the intended 20 years to 30 years

c. maintenance and support regime:
 (1) a maritime mission system designed for operation in a sea surface temperature (SST) above 6 degrees celsius required to operate in the vicinity of Heard Island (SST 3 degrees celsius) may require an adjustment to the hull survey frequency
 (2) usage of associated subsystems for purposes for which they were not initially intended, or at a rate of usage other than that expected – for example the use of targeting radars for navigational purposes

d. extant OSI:
 (1) key personnel routinely required to exceed fatigue boundaries
 (2) ship routinely sails with personnel / billet pre-requisite (BPR) shortfalls.

1.35 Duty holders must be mindful of how the considerations above may be interdependent. Extending the life-of-type, for example, will require review of the maintenance and support regime; it may also:
 a. require a review of management of the configuration baseline going forward
 b. necessitate changes to the extant OSI.

1.36 Specific examples of defined taskings exceeding the extant OSI (ie ‘will do’ exceeding ‘can do’) are at the DSwMS website.6 In each case, a range of potential implications is described.

1.37 The DSwMS compliance obligations centre on the requirement to enable, develop, maintain and operate in accordance with the baselined OSI – ie the OSI is the principal point of reference for Defence seaworthiness management. The application of the DSwMS compliance obligations with respect to these concepts is described in Figure 1–5 below.

1.38 Goal 1 establishes the required governance and management conditions to enable seaworthiness management.

1.39 Goals 2 and 3 ensure that maritime mission systems and enabling support systems are acquired, operated and supported in accordance with Capability Manager’s operating and support intent such that alignment is always maintained between the Capability Manager’s requirements, the design, utilisation and support of a maritime mission system. This is specifically represented in Figure 1–6.
1.40 Circumstances may arise where the design does not align with the OSI as depicted in Figure 1–7.
1.41 The DSwMS regulations with respect to Goal 2 require that these are aligned as described in Figure 1–8.

This may occur when:

- Government directs aspects (or all) of the design.
- OSI was not well defined in the first instance (which becomes apparent as design stabilises).
- Changes to legislation require different solutions (emissions control etc).
- Technology becomes redundant.
- New or emerging threat requires greater capability.
Figure 1–8 The operating and support intent must be made to align

1.42 Where the OSI is reduced to align with the design, this may create a capability gap that may require management as depicted in Figure 1–9.
Figure 1–9 Amending the operating and support intent could introduce a capability gap

Possible Capability Gap

The capability gap could be managed by use of, or modification of, an existing mission system; or by another, new capability.

DEFENCE SEAworthiness MANAGEMENT SYSTEM AND CAPABILITY MANAGEMENT

1.43 Managing for the Seaworthiness Outcome (seaworthiness management) as described above, is a core aspect of capability management. By design, the DSwMS ensures those whose responsibilities and accountabilities require them to make seaworthiness-related judgements and decisions can do so with justified confidence that those decisions contribute to the achievement of the Seaworthiness Outcome.
CHAPTER 2
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM
GOVERNANCE ARRANGEMENTS

Reference:
A. Defence Instruction Administrative Policy ME2 - Defence seaworthiness management system: Annex H-3

INTRODUCTION
2.1 In accordance with Reference A, the Defence Seaworthiness Authority (DSwA) is responsible for establishing, managing and reviewing the efficacy of the Defence Seaworthiness Management System (DSwMS) in achieving the Seaworthiness Outcome.

2.2 The DSwA therefore has responsibilities to assure good governance of Defence seaworthiness arrangements, that support Capability Managers in achieving the Seaworthiness Outcome. Capability Managers must comply with the DSwA’s direction for governance and management for the Seaworthiness Outcome.

2.3 All duty holders, in the context of the DSwMS, are also bound by the requirements of relevant Commonwealth and state/territory legislation, inclusive of that relating to health, safety and the environment.

AIM
2.4 This chapter addresses governance in the context of Defence seaworthiness and describes the principles and arrangements for good governance of Defence seaworthiness.

GLOSSARY
2.5 Definitions, acronyms and abbreviations relevant to the DSwMS Manual (DSwMSMAN) are located in the Glossary.

SEAWORTHINESS GOVERNANCE
2.6 The Australian Defence Glossary defines ‘governance’ as:

The principles, values, practices and processes by which an organisation is led, managed and held to account.

DSwMS Governance and Management Compliance Obligation (GMCO) 1.1 is specific to the requirement for Capability Managers, and enablers on whom they depend, to ensure that appropriate governance arrangements are in place for the effective management of seaworthiness.

Note: It includes organisational culture and values, key principles of accountability and stewardship, and review functions which provide confidence about both performance and conformance.

2.7 Seaworthiness governance seeks to align decision-making throughout Defence so as to most effectively achieve the Seaworthiness Outcome for the enterprise as a whole. It is therefore concerned with managing hazards and risks to the Seaworthiness Outcome, as distinct from managing capability.

2.8 The governance of seaworthiness is achieved through:

a. the three components of the DSwMS:
 (1) Regulatory Framework, as described in Volume 1, Part 1, Chapter 3
 (2) Risk Management and Assurance Framework, as described in Volume 1, Part 1, Chapter 4
 (3) Operating Model, as described in Volume 1, Part 1, Chapter 5

b. a set of governance principles that guide seaworthiness decision making and reinforce seaworthiness culture and values

c. a governance structure defining the relationships between the Regulator and the regulated

d. decision rights and accountabilities by which seaworthiness authority is exercised and controlled

e. mechanisms for holding duty holders to account including, but not limited to, issue resolution (escalation) and enforcement.

PRINCIPLES FOR GOVERNANCE OF SEAWORTHINESS

2.9 The governance principles seek to guide decision-making and communication at all levels within the DSwMS and provide a common basis for assessing the appropriateness of decisions. They also reinforce the cultural values and behaviours required for the sustained success of the DSwMS.

2.10 The seaworthiness governance principles require that seaworthiness decisions are made:

a. mindfully – decisions are more effective and less likely to have unintended consequences when they are made with a thorough understanding of the context, the required outcome, the options available, and their implications now and in the future

b. collaboratively – obtaining input from all stakeholders and engaging in joint problem-solving results in better decisions (bearing in mind that collaboration does not necessarily require consensus)

c. accountably – decisions only become effective when people take accountability for making them happen

d. transparently – decisions are more effective when everyone understands what has been decided and why.

2.11 These principles are embedded in and reinforced through the three components of the DSwMS. The extent to which they are demonstrated in the culture of Defence is also monitored and measured through the DSwMS Operating Model.
GOVERNANCE MODEL FOR SEAWORTHINESS

2.12 The seaworthiness governance model recognises that the Secretary of Defence and Chief of Defence Force (CDF):

a. are accountable for Defence outcomes to government
b. require accountable duty holders to discharge governance responsibilities and give them assurance against these requirements.

2.13 The seaworthiness governance model is structured around the three lines of defence construct (see Volume 1, Part 1, Chapter 4 for full description), which is consistent with good governance practice for risk-based decision making:

a. The first line of defence comprises duty holders who are best placed to act on hazards and risks to the achievement of the seaworthiness outcome as they relate to day-to-day capability management, operation and support of a mission system across the Capability Life Cycle (CLC).

b. The second line of defence comprises duty holders who provide systems of control to the first line and conduct assurance over the activities of the first line.

c. The third line of defence comprises duty holders who are independent of the chain of command applicable to the first and second lines and can therefore provide an independent and more strategic view across the enterprise.

2.14 The three lines of defence is a risk governance and management hierarchy in that risk-based decision rights escalate from the tactical in the first line to the strategic in the third line, but this should not be confused with the military chain of command or organisational management hierarchies.

2.15 In the context of seaworthiness governance, the duty holder in the third line of defence is the Defence Seaworthiness Regulator (DSwR). Duty holders in the first and second lines of defence constitute the regulated.

2.16 DSwR is not the only third line of defence regulator within Defence and there are also multiple regulators within the broader Australian and international regulatory environment. For example, under the International Maritime Organisation (IMO) Convention for Safety of Life at Sea 1974 (SOLAS), the Government of the Nation State whose flag a ship is entitled to fly, is referred to as the ‘Administration’. Furthermore, the United Nations Convention on Law of the Sea (UNCLOS) defines the functions of an Administration. In the Australian context, these functions have been delegated across multiple departments and agencies through the Administrative

Arrangements Orders. Further guidance on how the ‘Administration’ is represented in Defence, and the role of DSwMS in this context, is located at the DSwMS website.

2.17 DSwR is accountable to provide the Defence interface with those other regulators impacting the DSwMS regulatory framework, as well as with international bodies with whom Defence has a shared interest. DSwR’s role with respect to these other regulators is to interpret their requirements and where appropriate apply them to the seaworthiness context.

2.18 The seaworthiness governance model is depicted in Figure 2–1. Further details on the model and its underpinnings are available in the guidance on the DSwMS website.

Figure 2–1 Seaworthiness governance in context of three lines of defence

13 See Volume 1, Part 1, Chapter 5 (process 1 – define compliance requirements)

DECISION RIGHTS AND ACCOUNTABILITIES FOR SEAWORTHINESS

REGULATOR

2.19 The appointed regulatory authorities within the DSwMS are the DSwA and the DSwR.

2.20 The DSwA is accountable for assuring justified confidence in the achievement of the Seaworthiness Outcome, at the third line of defence, on behalf of the Secretary and CDF. In order to provide an independent advisory pathway to the DSwA in accordance with contemporary governance practice, the DSwMS design provides for an Independent Seaworthiness Management Review (ISwMR) Panel. The role of the ISwMR Panel is to provide advice to the DSwA on:

a. the ability of the DSwMS to deliver the Seaworthiness Outcome
b. the correctness of seaworthiness management practice in accordance with the DSwMS Manual
c. the effectiveness of the management of seaworthiness of ADF maritime mission systems, both Force-in-Being and Future Force.

2.21 The DSwA has appointed the DSwR as the single Defence Seaworthiness Regulator, responsible for establishing, managing and continually improving a system (known as the DSwMS) to regulate and assure the management of seaworthiness.

2.22 The DSwR is not a ‘permissioning authority’ (see Volume 1, Part 1, Chapter 3 and Chapter 5). The DSwR develops regulations as a framework to aid the Capability Managers and other duty holders in assessing hazards and risks to the achievement of the Seaworthiness Outcome, but this in no way absolves any duty holder of their accountability in managing hazards and risks to seaworthiness in their mission systems and enabling support systems.

2.23 The DSwR is supported by the Office of the Defence Seaworthiness Regulator (ODSwR), which is headed by the Executive Director Office of Defence Seaworthiness Regulator (ED ODSwR) and includes three DSwMS directors:

a. The ED ODSwR leads and manages the ODSwR, with accountability for:
 (1) priorities
 (2) resource allocation
 (3) performance metrics

15 Refer Good Governance Guide [Governance Institute of Australia], The benefits of an advisory board [Australian Institute of Company Directors], Seeking Independent External Advice [Australian Institute of Company Directors].

16 Thereby requiring it to review the suitability of the system’s regulatory framework, Risk Management and Assurance Framework, and the Operating Model as well as the activities and practices of the Defence Seaworthiness Regulator (DSwR) and Capability Managers.

17 The DSwA will gain confidence in the seaworthiness of mission systems from the DSwR and Capability Managers via assurance activities that accord with the three lines of defence Risk Management and Assurance Framework.
(4) performance management
(5) issuing of Defence Seaworthiness Corrective Actions (SCAs) at the strategic level on behalf of DSwR
(6) resolution of issues spanning multiple processes
(7) advocacy with other regulators (internal and external to Defence).

b. DSwMS directors manage specific DSwMS Operating Model processes and are accountable for:
 (1) developing regulations
 (2) assessing adequacy of hazard and risk assessment
 (3) assessing adequacy of means of compliance
 (4) providing education and advice on the DSwMS
 (5) conducting assurance
 (6) managing the issuing of SCAs to the operational and tactical levels of the regulated
 (7) reporting on the achievement of the Seaworthiness Outcome across Defence
 (8) improving the performance of the DSwMS.

REGULATED
2.24 Within the regulated community, the key governance and management roles with respect to seaworthiness management are:
 a. duty holders accountable for the performance of DSwMS functions as defined through compliance with Governance and Management Compliance Obligation (GMCO) 1.1 and GMCO 1.4
 b. the Capability Manager, who is a duty holder with specific accountabilities to specify and deliver capabilities to required levels of preparedness.

2.25 Capability Managers are accountable for the achievement of the Seaworthiness Outcome in the first and second lines of defence, for the maritime mission systems under their control. This accountability extends to requirements associated with enabling support systems, noting that these support systems may be controlled by other elements of the Defence Enterprise.

2.26 To fulfil this accountability, Capability Managers integrate contributions of other duty holders, and where necessary designate duty holders, and enact policies in accordance with the requirements of the GMCOs and Activity and Condition Based Compliance Obligations.

2.27 The over-arching accountability of Capability Managers for achieving the Seaworthiness Outcome reinforces the centrality of the Capability Manager in the management of mission systems and their enabling support systems across the CLC. Seaworthiness management is a critical and necessary component of capability management.

2.28 To achieve the Seaworthiness Outcome, Capability Managers will often need to hold to account parties that they have no direct control over. This is one of the features that distinguish seaworthiness governance, as a hierarchy of control for risk
management, from chain of command or line management hierarchies. It is also one of the challenges that the GMCOs have been designed to address.

2.29 The separation of authorities between the DSwA and the Capability Managers is an important distinction. The Capability Managers and other duty holders in the regulated are accountable for the achievement of the Seaworthiness Outcome. This requires that they:

a. establish and maintain a general understanding of the hazards and risks in the context of their business
b. apply suitably resourced systems of control
c. ensure that those systems of control are being adhered to.

2.30 The DSwA is accountable for the independent assurance of the adequacy of the design and effectiveness of the seaworthiness risk management system across the Defence Enterprise.

ACCOUNTABILITY MANAGEMENT FOR SEAWORTHINESS

ACCOUNTABILITIES

2.31 Whenever possible, accountability for seaworthiness decisions is to be devolved to duty holders at the lowest authorised level. This usually results in better decisions as people closer to the issues usually have the best understanding of the immediate context and risks. It reinforces the need for duty holders and practitioners to be mindful and to manage their own risks. It also helps avoid unwanted ‘upward delegation’ of decisions that can undermine seaworthiness accountabilities and lead to decision 'bottlenecks'.

ISSUE RESOLUTION AND ESCALATION

2.32 However, where hazards or risks to the achievement of the Seaworthiness Outcome, or issues arising from those hazards/risks, meet established materiality criteria, decisions are to be escalated in accordance with those criteria.

2.33 The DSwR defines materiality criteria for the DSwMS, consistent with the Defence risk materiality thresholds, and publishes them on the DSwMS website.\(^{18}\)

2.34 The Regulator (DSwA, DSwR or ODSwR) or the regulated may also instigate the requirement for escalation to resolve specific issues, in accordance with the issue resolution and escalation process defined in the DSwMS Operating Model (see Volume 1, Part 1, Chapter 5, Process 9).

2.35 The DSwA utilises the Seaworthiness Corrective Action (SCA) process\(^ {19}\) as a mechanism to resolve issues or escalate as required. SCAs are a mechanism that can be used by the DSwA to provide notice to the regulated community to:

a. Rectify a specific non-compliance with the DSwMS.

\(^{18}\) [Link to DSwMS website]

\(^{19}\) [Link to DSwMS website]
b. Rectify or improve a means of compliance (MOC) where it has been proven less effective than anticipated. The requirement for this type of SCA will typically be identified through assurance and trend analysis. This type of SCA is provided to assist the regulated community in the improvement of hazard and risk controls in the context of the Seaworthiness Outcome.

2.36 Issues requiring a SCA may be identified through the analysis of data conducted by the DSwR or recommendations from the ISwMR Panel after the conduct of an Independent Seaworthiness Management Review.

2.37 Depending on the issue identified, there are three levels of SCAs that can be issued with differing requirements. These levels are:

a. **SCA Level 1 – Critical SCA.** Critical SCAs are issued when non-compliance poses significant risk to the seaworthiness of a system. Action must be taken immediately to rectify the non-compliance and rectification must be reported to DSwR. The DSwA will determine the appropriate reporting requirements for each SCA Level 1. Non rectification of Level 1 SCAs will be the subject of a separate report to the DSwA.

b. **SCA Level 2 – SCA.** SCAs are issued when non-compliance represents a risk to the seaworthiness of a system and requires rectification. A due date will be set for when the SCA is required to be rectified along with any associated reporting requirements. SCAs will be reviewed periodically as determined by the DSwA, for progress towards closure.

c. **SCA Level 3 – Improvement Notice.** An Improvement Notice (IN) is issued to notify an area that requires improvement within the capability’s compliance strategy. INs will be reviewed during surveillance and assurance activities to note any progress. If an IN is not addressed during normal business processes then it may be escalated to a SCA Level 1 or 2.

2.38 **SCA Management.** SCA management will be undertaken by the ODSwR. The ODSwR will track and report to the DSwR and DSwA on open SCAs and log associated correspondence regarding the SCA and its actions.

2.39 **SCA Issue.** Where the recommendation to raise a SCA is proposed, the relevant evidence is to be provided to the DSwR and DSwA for determination. If warranted, the DSwA will decide the appropriate SCA level and issue the SCA to the relevant Capability Manager (eg CA, CN, Chief Defence Scientist) for action. The Capability Manager is to acknowledge the receipt of the SCA and close out requirements. On receipt of a SCA, the Capability Manager is required to delegate appropriate authorities to determine and implement required actions in order to rectify the identified issue.

2.40 **SCA Close-out.** The Capability Manager is required to provide a minute to the DSwR detailing the request for closure and evidence to support this request. When the DSwR has reviewed the evidence a recommendation for closure will be submitted to the DSwA. The Capability Manager will then be notified of the decision and any required actions.

2.41 Close-out dates will be assigned to the SCAs based on the risk posed to seaworthiness. Action authorities will be required to provide updates on their progress towards closure of their relevant SCAs as directed by DSwA. Provision of information of outstanding and overdue SCAs will be provided to the DSwA and may be reported further.
ENFORCEMENT

2.42 The primary objective of DSwMS is to achieve voluntary compliance, where it is recognised that compliance with the regulations is in the best interest of the enterprise. However, situations may arise where enforcement action is required. Accountabilities to exercise enforcement under DSwMS are shared between internal authorities (e.g., summary authorities, service tribunals, the DSwR etc) and external regulators (e.g., Comcare etc). These authorities work in parallel to ensure compliance to DSwMS. In general, enforcement mechanisms and who has accountability to enforce them are set out in applicable legislative instruments.

2.43 Figure 2–2 represents the DSwMS enforcement framework diamond and shows how the relevant authorities relate to each other. Across the middle of the diamond are the minimum legal requirements. The DSwMS processes are designed to increase the regulated’s voluntary compliance. As the regulated work toward the top of the diamond they become champions of better practice. Regulators and peers can learn from the regulated’s actions at this level.

20 These include accountable officials identified for the purposes of the Public Governance, Performance and Accountability Act 2013 and Public Service Act 1999 (PS Act); Service Tribunals and summary authorities appointed under the Defence Force Discipline Act 1982 (DFD Act); any person with authority to direct or instruct a person to do something, military or civilian under the Defence Act 1903, DFD Act and PS Act, and DSwA and DSwR under the DSwMS Manual.
Figure 2–2 DSwMS Enforcement Framework Diamond

- **Regulated actions**
 - Compliance champion: Self-initiated better practice. Understands what to do and why and has processes in place to continuously improve eg review and revise compliance strategies. Educates and encourages others to improve.
 - Intentional compliance: Complies because they know what to do and are willing to do it. Completed their compliance strategy and applying acceptable means of compliance.
 - Unintentional non-compliance: Willing to do what’s right, but don’t know what is expected. Can get it right next time.
 - Intentional non-compliance: Knows obligations and chooses not to comply or is ambivalent to the consequences, repeat offender, limited or poor systems to comply.
 - Repeat offender/serious non-compliance: Culture of non-compliance, deliberate non-compliance or cases where serious harm is caused.

- **Internal authorities & Regulator response**
 - Internal
 - Defence Seaworthiness Authority, Airworthiness Authority, Explosive Ordnance Disposal Authority, etc.
 - External
 - COMCARE, Dept Agriculture and Water Resources (DAWAR), Australian Maritime Safety Authority (AMSA), etc.

- **Regulator response**
 - Awards and recognition.
 - Collaboration, greater independence (reduce oversight).
 - Cooperation, education, advice, investigation of complaints, corrective action notices.
 - Minimum legal requirements
 - Warnings, compliance inspections and increased surveillance, exclusion and action IAW direction of the accountable authority, inform external regulator where required by law.
 - Infringement notices, criminal prosecutions, prosecution penalties, deregistration.
2.44 The regulated’s action and behaviour below the middle line requires increasingly responsive and commensurate enforcement action from both internal and external regulators. At the very bottom of the diamond is the most severe response to a breach of compliance (e.g., dismissal and imprisonment).

2.45 Most of DSwR’s interaction with the regulated occurs in the middle sections of the diamond. Education and assistance from the ODSwR is always preferred to enforcement. The DSwR does however reserve the right to take other such action as deemed appropriate in order to manage hazards and risks to the achievement of the Seaworthiness Outcome. Coercive powers within the DSwMS governance and regulatory framework exist to address those occasions where issuing advice, sharing information and cooperation has failed to assure the management and achievement of the Seaworthiness Outcome. Such action may include, but is not limited to:

a. escalating an issue under process 9 (see Volume 1, Part 1, Chapter 5, Process 9) which results in the accountable official halting a project at a gate review until specified conditions have been satisfied

b. advising an accountable official to, for example, defer sea trials until specified conditions have been satisfied

c. issuing a SCA which recommends the accountable official restrict the operation of a maritime mission system, or elements of its support system, until specified conditions have been satisfied.

2.46 The DSwA or DSwR, as appropriate, will determine the enforcement modes in each case on the merits of its particular context and circumstances. Consistent with the principle that the DSwR is not a permissioning authority (see paragraph 2.21), the exercise of enforcement powers will need to be judicious and the exception under DSwMS.
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 3
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM
REGULATORY FRAMEWORK

INTRODUCTION
3.1 The Defence Seaworthiness Management System (DSwMS) comprises a Regulatory Framework, a Risk Management and Assurance Framework and an Operating Model as described in Chapter 1. This chapter describes the DSwMS Regulatory Framework, which articulates the DSwMS compliance obligations (the regulations). Each compliance obligation is expressed as a functional objective, an outcome, rationale and associated requirements. The requirements must be satisfied to build confidence that hazards and risks to the achievement of the Seaworthiness Outcome are being controlled.

AIM
3.2 This chapter describes the design rationale and specific role of the DSwMS Regulatory Framework in managing hazards and risks to the achievement of the Seaworthiness Outcome. It further describes how duty holders must interact with, and respond to, the DSwMS compliance obligations.

GLOSSARY
3.3 Definitions, acronyms and abbreviations relevant to the DSwMS Manual (DSwMSMAN) are detailed in the Glossary.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM REGULATORY FRAMEWORK – PURPOSE
3.4 The purpose of the DSwMS Regulatory Framework is to articulate, through the DSwMS compliance obligations, regulatory controls derived through analysis of hazards and risks to the achievement of the Seaworthiness Outcome. These regulatory controls also form a basis for the conduct of DSwMS assurance.
3.5 The DSwMS compliance obligations specify functional objectives, outcomes, rationale and associated requirements, for:
 a. governance arrangements, management systems and activities as they relate to the achievement of the Seaworthiness Outcome
 b. controls relating to hazards and risks inherent in maritime mission systems and their enabling support systems.
3.6 It is through compliance with DSwMS compliance obligations that hazards and risks to the achievement of the Seaworthiness Outcome are controlled in a manner that is:
a. coherent21

b. proportional

c. aligned to roles, responsibilities and accountabilities

d. compliant with legislative requirements.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM REGULATORY FRAMEWORK – DESIGN CONCEPT

RISK AND THE DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM REGULATORY FRAMEWORK

3.7 To govern and manage risks to the Seaworthiness Outcome, it is necessary to have a comprehensive understanding of the risk management context. To do so, the DSwMS uses two contextual aids: the Risk Management and Assurance Framework and a risk management taxonomy, both of which are described in detail in Volume 1, Part 1, Chapter 4. The DSwMS aligns hazards, risks, systems of control22, roles, responsibilities and accountabilities as they relate to the achievement of the Seaworthiness Outcome through these contextual aids. The DSwMS regulatory framework is aligned accordingly and provides enterprise level direction and regulatory control for management of hazards and risks to the Seaworthiness Outcome.

OUTCOME-FOCUSED AND GOAL-BASED REGULATION

3.8 The DSwMS Regulatory Framework is outcome-focused and goal-based. The rationale for this design approach is the need for a regulatory solution that can function efficiently; and produce sensible, practicable and effective risk management controls (solutions), in a highly complex and dynamic environment. Compliance obligations are defined through an explicit articulation of the overarching aim; and logically associated goals, functional objectives, outcomes, rationale and requirements. The advantages of this approach are:

a. The rationale and the underlying intent for the outcomes and associated requirements is known, stated and understood; and aligned to the enterprise aims and objectives.

b. With outcome as the focus, the problem of managing risks from the perspective of functionally independent silos is avoided. Taking a particular functional view independently can lead to the ‘function trap’23 where risk is only considered in the context of the specified functional area, and may

21 A manner which addresses the conditions of, and is traceable to, the Seaworthiness Argument (see Volume 1, Part 1, Chapter 1) and which, if satisfied, makes it reasonable to expect that the Seaworthiness Outcome will be met.

22 Refer Annex 3C for further information on ‘systems of control’.

become disconnected from the enterprise aims and objectives (see Volume 1, Chapter 4 for further discussion).

c. Solutions to meet the compliance obligations are not developed by the regulator. Rather, the solutions are proposed by those who own, and are best placed to manage, the hazard or risk in their circumstances (i.e., solutions can be optimised for the context by those who are best placed to do so). This ensures:

(1) ownership of the hazard or risk, and accountability for ensuring the requirement is met, stays with those best placed to manage the hazard or risk

(2) constraints on solutions are minimised and innovative and alternative solutions are encouraged (solutions are constrained only where absolutely necessary, or where prescribed by legislation).

3.9 Adopting this approach to regulatory design avoids the issues typically associated with regulations that prescribe solutions. These issues may include:

a. A perception by the regulated community that the regulator is accountable for the control of the risk and that all that is necessary on their part is compliance. This undermines the need for mindfulness on the part of the regulated community, who are the ones best placed and accountable for managing the risk. Furthermore, it may create a culture of dependency by the regulated community on the regulator.

b. Control solutions which are inappropriate in the circumstances (not suitable in the context) and may result in unintended consequences, including increased risk exposure or an inability to conduct or achieve the defined task. Examples may include:

(1) a one-size-fits-all approach such as prescribing a means for navigation appropriate for a major combatant but which does not fit the context for a small craft; or forcing a military mode of operating on a system designed for a civilian context

(2) a prescribed solution that cannot be implemented such as civil diving regulations, which may require a clear column of water above the diver but which is not compatible with clearance and Naval ship diving activities

(3) a new technology that is adopted, which brings risks not envisaged previously.

3.10 For the DSwMS, the guiding principles for the development and authorisation for use of a DSwMS compliance obligation are that:

a. risk is always considered in context of an outcome
b. it must take a performance-based perspective with respect to systems24 of control (systems of control are discussed further in Annex 3C).

c. the rationale and intent must be readily available

d. the response (ie the solutions) must be justified.

3.11 Consistent with the paragraph above, the DSwMS aims to regulate through a performance-based approach for systems of hazard and risk control. It does not aim to exercise direct control over discrete hazards and risks. This would be both impracticable and inappropriate, as neither the risk nor the accountability is the DSwR's.

3.12 The DSwMS compliance obligations do not replace the requirement that duty holders exercise mindfulness in knowledge of their accountability for the management of hazards and risks as they relate to the achievement of the Seaworthiness Outcome. The DSwR does not, therefore, perform a 'permissioning' role – ie does not authorise, licence or otherwise certify artefacts owned by Capability Managers or their representatives for the purpose of providing permission to operate. The DSwR is, however, accountable for issuing of policy and compliance obligations through which duty holders, on compliance, can reasonably expect to:

a. achieve the Seaworthiness Outcome

b. satisfy legal duties as they relate to the achievement of the Seaworthiness Outcome.

3.13 In addition, the DSwR will support duty holders in their compliance efforts through the development of a compliance strategy required by the DSwMS Operating Model (see Volume 1, Part 1, Chapter 5) and through a risk-based approach, perform assurance activity against outputs and outcomes to verify the performance of systems of control.

3.14 Annex 3A provides details regarding the elements of ‘goal-based’ regulation and the relationships between those elements.

DETAILED STRUCTURE OF THE DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM REGULATORY FRAMEWORK

3.15 The DSwMS Regulatory Framework consists of regulations of two types:

a. Governance and Management Compliance Obligations. These are regulatory controls specifically directed at governance and management functions and activities25 across the Capability Life Cycle (CLC). Governance

24 It will, where appropriate, look to the functions and performance of systems (which may comprise physical, personnel, command, control and management elements) and regulate for the performance of those systems with respect to their ability to control hazards and risks to the Seaworthiness Outcome.

25 For example, in context of the Seaworthiness Argument, risks to the seaworthiness outcome are introduced where governance and management functions and activities: (a) are not suitable (are not aligned to the functional objectives of the compliance obligation, or not performed to the specified standard); (b) are suitable, but not adequately resourced or implemented; (c) are suitable and implemented, but are not followed.
and Management Compliance Obligations (GMCOs) aim to ensure the functions and activities are performed in a manner that is systematic, coordinated and aligned with achievement of the seaworthiness outcome.

b. **Activity and Condition Based Compliance Obligations.** These are regulatory controls specifically directed at mission and enabling support systems. Activity and Condition Based Compliance Obligations (ACCOs) aim to ensure hazards and risks inherent in those systems are also controlled in a manner that is systematic, coordinated and aligned with achievement of the Seaworthiness Outcome.\(^{26}\)

GOVERNANCE AND MANAGEMENT COMPLIANCE OBLIGATIONS

3.16 DSwMS GMCOs comprise three goals and related compliance obligations derived through analysis of the hazards and risks to the Seaworthiness Outcome associated with governing and managing capability across the CLC.

3.17 Goal 1 (Enable Seaworthiness Management) addresses the requirement to have governance arrangements, management systems and processes in place to support the activities and manage the outputs relating to Goals 2 (Maritime Mission System and Enabling Support System Align with Capability Manager’s Authorised Operating and Support Intent (OSI)) and 3 (Systems are Operated as Intended).

3.18 Specifically, Goal 1 comprises a series of governance and management objectives, presented in a logical cycle (see Annex 3B), for the management of maritime mission systems and their enabling support systems throughout the CLC. These are consistent with contemporary leadership, governance and management principles and with legal duties. They take account of the need for duty holders to establish and maintain:

a. Clearly defined accountability frameworks.

b. Consultation, cooperation and coordination mechanisms for information flow across the undertaking.

c. Systems to ensure that hazard and risk information is communicated across the CLC, and that effectiveness of hazard and risk controls is maintained (or, where practicable, improved) for maritime mission systems and their enabling support systems. This information relates to:

 (1) hazard and risks to maintaining alignment between the Capability Manager’s OSI and the maritime mission system and its enabling support system

 (2) hazards and risks to personnel, the public and the environment that must be managed through day-to-day operations.

\(^{26}\) It is a combination of activities and enabling conditions/system characteristics, and the functional performance of these, that determine the likelihood that the specified operational effect will be delivered. Where the functional performance of those activities and enabling conditions/characteristics is essential to delivering the specified operational effect, the associated hazards and risks must be identified and controlled if the likelihood of delivering that effect is to be maximised.
d. Appropriate performance levels for functional management activities (e.g., engineering, training, logistics and support, safety and environmental management, finance etc) that are essential to the achievement of the Seaworthiness Outcome. Note that many functions must act in a collective and coordinated manner in support of capability management processes, which include but are not limited to:

(1) planning
(2) needs and requirements analysis
(3) acquisition and commissioning
(4) operation and sustainment
(5) disposal.

e. Required competencies for those performing the essential functional management activities identified through (d) above.

f. Accident, incident management and investigative capabilities for the management of incidents or events relating to the achievement of the Seaworthiness Outcome, and to support continual learning.

g. Performance measurement and assurance aligned to accountabilities and through which judgements and decisions relating to seaworthiness management are informed.

3.19 GMCOs must be considered in context of a duty holder’s accountabilities and responsibilities (see Volume 1, Part 1, Chapter 2). For example, all duty holders are situated in, or across, specific phases of the CLC. Governance and management requirements are therefore considered with respect to the phase(s) in which the duty holder acts, and the roles and responsibilities of that duty holder.

3.20 GMCOs associated with Goal 1 enable Goals 2 and 3. Goals 2 and 3 express compliance obligations necessary to satisfy the Seaworthiness Argument as described in Volume 1, Part 1, Chapter 1 by ensuring that:

a. the Capability Manager's OSI is appropriately defined and controlled

b. hazards and risks relating to the achievement of the Seaworthiness Outcome in context of that OSI are considered through application of ACCOs (described in the ACCO section below)

c. the realisation and operation of a maritime mission system and its enabling support system occurs in a manner such that those hazards and risks are eliminated or, minimised so far as is reasonably practicable (SFARP) in context of that OSI.

27 The rationale and justification for each functional objective under Goals 2 and 3 is its explicit relationship to a necessary condition in the Seaworthiness Argument. Using the governance and management capability established under Goal 1 to satisfy the performance requirements in Goals 2 and 3 provides the necessary and sufficient conditions for the Seaworthiness Argument to hold true.
3.21 A graphical representation of the GMCO structure (including a full list of functional objectives) and the relationship of GMCOs to ACCOs are included at Annex 3B. DSwMS Manual Volume 2 contains the full set of GMCOs.

ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATIONS

3.22 The DSwMS ACCOs comprise three goals and associated compliance obligations derived through analysis of the necessary and sufficient functions and constituent elements that collectively realise a viable mission system.

3.23 The ACCO goals can be summarised as follows:
 a. Goal 1: The functions necessary for the mission system to exist and endure are established, monitored and maintained.
 b. Goal 2: The functions necessary for mission systems to move and maintain position are established, monitored and maintained.
 c. Goal 3: The functions necessary for the mission system to perform the taskings are established, monitored and maintained.

3.24 The functional objectives under each of these goals are achieved through the collective and integrated contribution of the constituent elements of a mission system:
 a. physical
 b. personnel
 c. command and control.

3.25 Analysis in development of the ACCOs aims to ensure users establish and maintain controls that relate to hazards and risks associated with the constituent elements and their relationship to the functional objectives. This relationship can be complex thus a full description of the methodology, the structure and the detailed application of the ACCOs is provided in Annex 3C.

3.26 The ACCOs consolidate the current knowledge of hazards, risks and controls as they relate to maritime mission systems, at a functional level, that guides and enables the duty holder in the selection and application of controls appropriate in context of the OSI.

3.27 The ACCO structure (including a full list of functional objectives) and the relationship of GMCOs to ACCOs are included in Annex 3B. The ACCO development and application method is included in Annex 3C. The DSwMS Manual, Volume 3 contains the full set of ACCOs.

3.28 In summary, the suite of DSwMS compliance obligations (GMCOs and ACCOs) articulates a coherent and comprehensive set of outcomes and requirements. The set is in a form that is suitable for application by those best placed to act in accordance with their risk management accountabilities. It is through the application of the DSwMS compliance obligations, as directed through the DSwMS Operating Model, that duty holders can reasonably expect that the Seaworthiness Outcome will be achieved.
MEANS OF COMPLIANCE

3.29 The regulated must respond to each applicable DSwMS compliance obligation through, in the first instance, a ‘proposed means of compliance’ (PMOC) – in effect a proposed ‘solution’ which, it is claimed, will satisfy the functional objective and related requirements described in the DSwMS compliance obligation.

3.30 Noting the DSwMS aims to regulate for the performance of systems of control, rather than exercise direct control over discrete hazards and risks, PMOCs with DSwMS compliance obligations may be achieved through systems solutions which can demonstrate to the duty holder, as the accountable official, how the requirements in a DSwMS compliance obligation will be measured and assured. PMOCs must, therefore, include the method of assurance.

3.31 Where sufficient evidence is available to have confidence in the PMOC, then the DSwR will recognise, through endorsement of a compliance strategy, that PMOC as a valid and therefore an acceptable means through which DSwMS compliance obligation requirements can be measured and assured. An endorsed strategy aggregates the acceptable means of compliance (AMOCs) for the maritime mission system and enabling support system in question.

3.32 The following two scenarios illustrate the concept of a means of compliance (MOC) applied to the two types of DSwMS compliance obligation:

a. A PMOC presented in partial compliance with GMCO 1.3 (establish hazard and risk management capabilities) might be the approved safety and environmental management system (SMS/EMS) active during each CLC phase of a maritime mission system and its enabling support system. The determination of acceptability (ie AMOC) might be based on evidence presented that the proposed SMS/EMS satisfies a recognised legal, national or international standard, in conjunction with a means of assuring the system is implemented and functioning as intended.

b. A PMOC presented in compliance with ACCO 2.2 (have and maintain situational awareness) might be:

(1) In the context of a major surface combatant, proposing a triple-redundancy\(^{28}\) navigation system. The AMOC might be evidence that the system meets the requirements of the OSI, that it has the necessary reliability and supportability attributes and that operator and maintainer training will be developed and delivered through processes and organisations recognised by a competent authority.

(2) In the context of a small craft, a line-of-sight operating policy might be appropriate. The AMOC might be presented that requires accountable duty holders to formally verify and retain evidence that:

\(^{28}\) Triple redundancy approach in this context might include a primary (visual), secondary (radar) and tertiary (GPS) means of maintaining situational awareness.
(a) small boat operator training is fit for purpose with reference to the requirement
(b) that operators have been trained, and remain current, to operate craft of that kind.

3.33 In developing a PMOC, duty holders must be satisfied that the PMOC:
 a. is suitable (ie fit for purpose)
 b. has been implemented, or that there is a reasonable expectation that it will be implemented
 c. will function as required\(^{29}\)
 d. can be measured against the requirements of the compliance obligation.

3.34 The suitability of a PMOC must be determined, SFARP, on an objective basis if it is to be consistent and defensible. It is the ability to assess the PMOC against objective, consistent and defensible criteria that 'justifies' the claim, by the duty holder, that the PMOC should be acknowledged by the DSwR as acceptable (ie that it constitutes a defensible argument). In proposing MOCs, duty holders must consider:
 a. consistency/compliance with legal or industry codes of practice or standards
 b. competency and authorisation of those applying those codes of practice or standards
 c. the recognition or approval by competent authorities of systems/organisations relating to subparagraphs (a) and (b) above
 d. the suitability of evidence relating to application of the codes of practice or standards by the competent and authorised entities using recognised systems/organisations (eg accreditations, licences, certifications etc).

3.35 These core principles are applied by the DSwR when considering PMOCs for acceptance.

3.36 The DSwR is responsible for the provision of guidance as to what constitutes an AMOC for a particular DSwMS compliance obligation. This guidance must articulate the principles that underpin an AMOC, and provide examples of AMOCs, for reference by the relevant duty holders.

3.37 In certain circumstances the DSwR may direct a particular solution, referred to as a directed means of compliance (DMOC). This may occur:
 a. In response to prescribed legislation.
 b. Where Defence direction is provided from other third line of defence policy owners.

\(^{29}\) The extent that the DSwR will be engaged in assuring the implementation and maintenance of solutions is dependent on the associated risk – ie is a risk based decision agreed between the DSwR and the duty holder during development of a ‘compliance strategy’ and associated ‘assurance plan’ (see Volume 1, Part 1, Chapter 5 for detail).
c. In cases where the Regulator is satisfied that only a particular solution will provide the required level of hazard and risk control. In this case, such DMOC are expected to be the exception.

3.38 It is the responsibility of the Capability Manager to propose solutions appropriate to their context for agreement by the DSwR through endorsement of a compliance strategy. Further guidance is available in Volume 1, Part 1, Chapter 5, Process 2.

DEVELOPING A COMPLIANCE STRATEGY

3.39 Duty holders must develop a compliance strategy in accordance with Process 2 of the DSwMS Operating Model (see Volume 1, Part 1 Chapter 5). The compliance strategy must articulate the PMOC for applicable DSwMS compliance obligations. The DSwR will on request, provide supporting advice on development of a compliance strategy, including determining those DSwMS compliance obligations that are applicable in the circumstances.

3.40 The DSwR may, where appropriate, authorise a competent authority to act on their behalf to determine, in respect of a maritime mission system and its enabling support system:

a. the applicability of compliance obligations

b. the acceptability of PMOCs.

3.41 Duty holders are to submit the strategy to the DSwR for assessment of its suitability as a basis for assuring compliance with the requirements of the DSwMS. On agreement by the DSwR, the strategy becomes, in effect, the ‘claim’ and ‘argument’ relating to management for the achievement of the Seaworthiness Outcome for the subject maritime mission system and its enabling support system.

3.42 Duty holders are required to implement the strategy. The DSwR may seek to assure, through evidence, that the claim and argument as articulated by the strategy, remain valid throughout the CLC. That ‘evidence’ is provided through the assurance activity described in assurance plans (see Volume 1, Part 1, Chapter 4). Thus confidence in achievement of the Seaworthiness Outcome is justified through evidence.

ADMINISTRATION OF DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM COMPLIANCE OBLIGATIONS

3.43 The DSwR is accountable for the development, promulgation and configuration management of DSwMS compliance obligations. DSwMS compliance obligations are developed, promulgated and administered by the Office of the Defence Seaworthiness Regulator (ODSwR) in accordance with the requirements of the DSwMS Operating Model.

3.44 For further detail, see Volume 1, Part 1, Chapter 5, Process 1.

Annexes:

3A Outcome-focused Global based Regulation
3B Defence Seaworthiness Management System compliance obligations overview and functional relationship
3C Activity and Condition Based Compliance Obligations development methodology structure and use
OUTCOME-FOCUSED GOAL-BASED REGULATION

INTRODUCTION

1. The Defence Seaworthiness Management System (DSwMS) adopts an outcome-focused goal-based approach to regulation. The basic principle is to articulate a logical hierarchy of goals, functional objectives and associated requirements which aims to control hazards and risks to delivery of an overarching objective.

2. The overarching objective for the DSwMS is the achievement of the Seaworthiness Outcome. The DSwMS includes two types of goal-based DSwMS compliance obligations; these aim to control hazards and risks to the achievement of the Seaworthiness Outcome inherent in:

 a. governance and management practices relating to the definition, realisation, operation and disposal of maritime mission systems and their enabling support systems – these are the DSwMS Governance and Management Compliance Obligations (GMCOs)

 b. the maritime mission systems and enabling support systems themselves – these are the DSwMS Activity and Condition Based Compliance Obligations (ACCOs).

3. The structure of DSwMS goal-based regulatory framework is illustrated in Figure 3A–1; the logic underpinning the structure is articulated in the subsequent section.
4. **Tier 1 – Aim.** This represents the highest level statement regarding what must be achieved – i.e., the overarching objective. For the DSwMS, this is the achievement of the Seaworthiness Outcome.

5. **Tier 2 – Goals.** These comprise a logical series of objectives which align with, and which necessarily must be satisfied to achieve, the overarching objective:
 a. **Governance and management goals.** These are objectives which sum to deliver governance and management outcomes necessary to achieve the Seaworthiness Outcome. They are related to the Seaworthiness Outcome through a logical argument – the ‘Seaworthiness Argument’ (see Volume 1, Part 1, Chapter 1).
 b. **Activity and condition based goals.** These are invoked through application of the GMCOs and represent objectives, where a number of hazard and risk controls may be required to act collectively, and to the specified performance level, to effectively manage hazards and risks inherent in maritime mission systems and their enabling support systems.

6. **Tier 3 – Functional objectives.** These represent a series of specific objectives that sum to deliver the tier 2 goals. They provide a logical structure for the articulation of requirements as they relate to those goals.
7. **Tier 4 – Requirements.** These represent function and performance requirements that relate to a particular functional objective and which guide users to identify and propose solutions that satisfy the requirements.

8. **Tier 5 – Solutions.** The means of compliance proposed by the regulated and deemed acceptable by the DSwR to satisfy the requirements.

9. **Rationale/justification.** This component represents the rationale for the requirement (provided by the DSwR) and the justification for the solution (provided by the regulated). The justification constitutes a *measure of mindfulness* insofar as a valid justification must demonstrate a duty holder understands the requirement and can propose a solution that is measurable, and which it is reasonable to expect will satisfy the requirement as it relates to the achievement of the Seaworthiness Outcome.
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM COMPLIANCE OBLIGATIONS OVERVIEW AND FUNCTIONAL RELATIONSHIP

Figure 3B–1 Defence Seaworthiness Management System compliance obligations

<table>
<thead>
<tr>
<th>Seaworthiness Outcome</th>
<th>GOAL 1: Enable Seaworthiness Management</th>
<th>GOAL 2: Systems Align with Operating & Support Intent</th>
<th>GOAL 3: Systems Operate as Intended</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMDOs</td>
<td>Regulating management arrangements and systems.</td>
<td>Regulating systems of control which are directly and collectively on specific mission systems to achieve the functional objectives and goals.</td>
<td></td>
</tr>
<tr>
<td>1. Enable Seaworthiness Management</td>
<td>1. Enter and Endure</td>
<td>1. Perform Task</td>
<td></td>
</tr>
<tr>
<td>3. Systems Operate as Intended</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functional Objective

- **OMDOs**:
 - Defence and Electronic Systems
 - Safety and Security
 - Seaworthiness and Transmissibility
 - Critical Functions
 - Hazard Management & Control

- **ACDOs**
 - Mission Analysis
 - Systems Analysis
 - Environmental Systems Support
 - Safety & Security
 - Seaworthiness
 - Critical Functions
 - Hazard Management & Control

Requirements

- Specific to each Functional Objective

Seaworthiness Outcome

To maximise the likelihood of achieving the specified operational effect for the defined tasking, where efforts have been made to eliminate or minimise so far as is reasonably practicable (SFARP), hazards and risks to personnel, the public and the environment.
Figure 3B–2 Defence Seaworthiness Management System compliance obligations – functional relationship

- Effective leadership and governance functions and structures to enable seaworthiness management are established and maintained.
- Consultation, cooperation, and coordination mechanisms to enable seaworthiness management are established and maintained.
- Hazard/risk management capabilities are established and maintained to assure hazards and risks to the achievement of the Seaworthiness Outcome are actively managed.
- Functions necessary to manage for the Seaworthiness Outcome are identified, established and maintained.
- Seaworthiness Incident response, management, and investigation functions are established and maintained.
- Competencies necessary to manage for the Seaworthiness Outcome are identified, established and maintained.
- Performance indicators, assessment activities, intervention measures and review processes to manage seaworthiness are established and maintained.

Activity and Condition Based Compliance Obligations (ACCOs) enabes

Goal 2 - Maritime Mission System and Enabling Support System Align with CM's Authorised OSI

Goal 3 - Systems are Operated as Intended

Seaworthiness Outcome
ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION DEVELOPMENT METHODOLOGY, STRUCTURE AND USE

1. This annex describes the method used to develop Activity and Condition Based Compliance Obligations (ACCOs), the structure of ACCOs and the application of them to mission systems with respect to hazard and risk controls in the seaworthiness context.

ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION DEVELOPMENT METHODOLOGY

2. Consistent with Defence Seaworthiness Management System’s (DSwMS) outcome-focused goal-based regulation, ACCOs are developed from a top-down approach of defining the goals that support the overarching aim of achieving the Seaworthiness Outcome, then the functional objective that achieve these goals, and then the requirements of each functional objective. The methodology considers:
 a. the necessary and sufficient functional requirements and constituent elements of a viable maritime mission system from a first principles approach
 b. the range of potential activities and tasks that may be required of a maritime mission system,
 c. the approach to risk management, where:
 (1) hazards, risks and codified controls in the Defence maritime environment are well known
 (2) hazards, risks and/or controls are not well known or understood and the need for management in accordance with an agreed risk management methodology.

3. The methodology requires that the ACCOs as a set are:
 a. mutually exclusive, in that they cover different and distinguishable obligations (no overlap)
 b. collectively exhaustive, in that they cover all significant aspects of seaworthiness from a regulatory perspective, for all maritime mission systems (no gaps).

4. A key component in achieving the above steps is a thorough literature review against a relevant body of knowledge, to inform the development of Defence seaworthiness regulations.

5. In the maritime context, the relevant body of knowledge is contained in a number of commonly used publications including but not limited to:
 a. Naval rule sets
 b. Civil maritime codes and conventions
 c. Classification Society rule sets.
6. In interpreting this body of knowledge, the DSwMS Regulation Working Group considers:
 a. The context for which each rule-set or code was written and any associated limitation, for example civilian versus military.
 b. The purpose for which each code or rule set was written and any associated limitation for example, safety, environment, engineering and training. These are typically functional or activity specific views and not always considered, defined, developed or applied in the context of organisational objectives.
 c. The regulatory approach applied by each code or rule-set for example, goal-based versus prescription.
 d. The suitability in the Australian Defence maritime context.
 e. Coherency and conflict between codes or rule sets.
7. The current literature review has confirmed that there is no single code or collective set that meets DSwMS requirements for regulating the management of Seaworthiness. The DSwMS Regulation Working Group therefore tailored and incorporated relevant aspects of applicable codes where appropriate.
8. This approach derived the ACCO structure which is described herein.

ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION STRUCTURE

AIM

9. The ACCOs are designed to complement and reinforce the Governance and Management Compliance Obligations (GMCO), noting the Seaworthiness Outcome (the Aim) can only be achieved when both the GMCO goals and the ACCO goals are achieved.

GOALS

GOAL 1: THE FUNCTIONS NECESSARY FOR THE MISSION SYSTEM TO EXIST AND ENDURE ARE ESTABLISHED, MONITORED AND MAINTAINED

10. **Rationale:** All mission systems are designed to operate in the environments specified in their operating and support intent (OSI) (GMCO 2.1 and 2.2). For example, maritime mission systems are designed to operate in a specific position in the water column (on the surface or submerged), in certain sea conditions and so on. To do so requires functions which, in the first instance, enable the mission system to exist and endure in those environments before it can perform any defined task beyond simply sustaining itself.

GOAL 2: THE FUNCTIONS NECESSARY FOR MISSION SYSTEMS TO MOVE AND MAINTAIN POSITION ARE ESTABLISHED, MONITORED AND MAINTAINED

11. **Rationale:** Mission systems usually need to position themselves in order to achieve their defined tasks. Each mission system, therefore, needs to be able to
maintain control of its speed, course, orientation and position to the degree required by its OSI.

GOAL 3: THE FUNCTIONS NECESSARY FOR THE MISSION SYSTEM TO PERFORM THE TASKINGS ARE ESTABLISHED, MONITORED AND MAINTAINED

12. **Rationale**: The purpose of a mission system is to achieve the required operational effects through performing defined tasks. This will often involve the use of specific military systems (e.g., detectors and effectors). The capability to perform a defined task will often need to be maintained or restored in the face of damage or impairment.

FUNCTIONAL OBJECTIVES

13. The goals above are underpinned through functional objectives. The functional objectives sum to deliver the goals which in turn, sum to deliver the aim (the Seaworthiness Outcome). Each ACCO articulates a functional objective. The design, realisation, and operation of a mission system must result in solutions which meet those functional objectives in context of its OSI.

14. Each ACCO also articulates requirements and considerations pertaining to risks that might prevent achievement of the functional objective, or which may result through achieving the functional objective. For example, a ballast water system may be necessary to achieve stability (a functional objective). A failure to maintain or operate the ballast system correctly may result in failure to achieve the stability required. However, achieving stability through ballast water transfer may introduce a risk to the environment through harmful pest translocation. In addition, this may also introduce a flow on risk to operating through possible denial of port access as a result of failing to meet local environmental management standards.

15. The ACCOs aim to consolidate the current knowledge of hazards, risks and controls as they relate to maritime mission systems, at a functional level, that guides and enables selection and application of controls appropriate in context of the OSI. That is, the functional objectives are defined in a manner that allows them to be interpreted and applied so a particular mission system can control hazards and risks as appropriate to its specific context.

REQUIREMENTS

16. Functional objectives are achieved through the collective and integrated contribution of the constituent elements of a mission system – physical, personnel, and command and control. That is:

a. Physical elements form the basis of all mission systems. Physical elements include all the inanimate things that are necessary to constitute the mission system, as distinct from personnel. This includes, for example, structures, machinery, equipment, hardware, software, consumables (such as fuels, lubricants, munitions) and so on.

b. Almost all mission systems require interaction with personnel. The OSI and the physical elements of a mission system will usually set the personnel requirements, while human factors will usually have to be taken into account in the design and use of the physical elements. In accordance with GMCO Goals 2 and 3, the OSI needs to be sufficiently evolved and understood to
provide guidance with respect to personnel and their interaction with the physical elements. Personnel must be trained and perform their tasks in an environment that enables the task to be sustained - they must be effective in their role which also requires that they be kept safe and well.

c. All mission systems operate in complex and dynamic environments. For a mission system to achieve its defined tasks, decisions must be made, communicated and executed efficiently and effectively. This requires each mission system to have appropriate integration of physical elements and personnel, as well as systems of communication, authority, command and control.

17. It follows that hazards and risks as they relate to the ACCO functional objectives, are managed through the function and performance of the constituent elements. Failure of those constituents to function and perform to the required level lessens the likelihood of achieving the operational effect for the defined tasking; and may expose personnel, public and the environment to harm (there is risk to the Seaworthiness Outcome).

18. Therefore, ACCO requirements call for solutions (systems of control) that act on or are enacted through one or more of these constituents to ensure they function and perform to the appropriate level as they apply to each functional objective, in the context of the OSI. Thus, there are a set of common and unifying requirements that apply to all constituents and across all ACCOs (see Volume 3, Part 0), as well as unique requirements specified in each ACCO.

19. The ACCO requirements also recognise that the maturity of controls must be appropriate to the requirements of the specific phase of the CLC that the mission system is currently in. For example, during commissioning, there may be a requirement that fire fighting and damage control functions be available prior to specific test and trial activities. In addition, the requirements of each ACCO will have associated vulnerabilities (point of weakness) that must be identified, managed and controlled. Thus, security is an integral component of a system of control and must be considered across each ACCO.

20. The ACCO Structure is provided at Figure 3C–1 below:
SOLUTIONS (SYSTEMS OF CONTROL)

21. Risks to achieving the functional objective, or which result through achievement of the functional objective, may be realised when constituent elements fail to function or perform to the appropriate level. Systems of control therefore act on or are enacted through the constituents of the mission system to prevent loss of control in the first instance, or should control be lost, to regain control and/or minimise the consequences.

22. The system of control, as a concept, can be defined at various levels; for example, a code of practice might be applied to the whole or part of a mission system (eg Naval Ship Code, Class Society rules etc) and may in turn require or apply a system of controls at a specific level. For example:

a. A system of control with respect to structural integrity of a mission system may be articulated through:

 (1) a Class Society rule set consistent with the requirements of the OSI, that requires the structure be designed by a recognised Suitably Qualified and Experienced Person (SQEP), independently reviewed, and that it then be inspected during construction and maintained through life with periodic inspections

 (2) training and requalification for maintainers

 (3) Orders, Instructions and Publications (OIP) for operators that describe operating limits and optimal modes for operation

 (4) assurance requirements and activities associated with (1) to (3) above.
b. A system of control at local level on a mission system, relating to, for example, the operation of a lifting davit associated with deployable sub-systems may comprise:

(1) independent certification of the davit and of the lift point on the deployable element in a specified periodic cycle

(2) training for operators with associated certification and re-qualification requirements including the use of appropriate personal protective equipment

(3) provision of operating and maintenance procedures reviewed by SQEP as consistent with the Original Equipment Manufacturer (OEM) design and intent for operation and maintenance (and aligned with the OSI)

(4) provision of communications and control arrangements between the control points such as the bridge of a ship and the operator

(5) operating assurance arrived at through periodic exercise of the system to provide confidence that it can be operated to support the defined task when required.

23. As discussed earlier, systems of control act on or are enacted through one or more physical, personnel and command and control constituents and typically comprise combinations of the following:

a. codes of practice

b. physical control solutions (e.g., navigation aids, machinery interlocks, guards, life saving and safety equipment)

c. Orders, Instructions and Publications (OIP)

d. training and qualifications

e. monitoring, management and reporting

f. assurance.

RISK MANAGEMENT APPROACH AND ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION APPLICATION

24. As discussed earlier, the Functional Objectives are defined in a manner that allows them to be interpreted and applied so a particular mission system can derive hazard and risk controls appropriate to its specific context. The interpretation and application is managed through Process 2 of the DSwMS Operating Model, which requires the Capability Manager to develop a compliance strategy for a mission system and its enabling support system. The compliance strategy must describe and justify the proposed means of compliance (PMOC) against the requirements articulated through the ACCOs. The PMOCs may take the form of one or more ‘systems of control’.

25. The proposed systems of control must meet both the unique requirements specified in each ACCO, as well as the common and unifying requirements discussed above and described in detail in Volume 3, Part 0.

26. The risk management approach used in development and application of the ACCOs is described in Figure 3C–2, which is derived from the Safe Work Australia...
Code of Practice, but which is applicable more broadly to managing the risks to the Seaworthiness Outcome.

Figure 3C–2 Risk management approach

ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION RISK MANAGEMENT APPROACH

27. Many hazards and risks in the Defence maritime undertaking are well known and have well established controls. In these situations, SQEP, when assessing hazards and risks, should identify and implement known controls while being mindful to take into account any limitations that may apply or any improvements that may be available in the circumstances. They should then determine if further risk assessment and treatment action is warranted. Where the controls are not well understood duty holders must apply the specific risk management approach and requirements articulated as a result of compliance with GMCO 1.3.

28. Note that in some situations, there is a mandatory requirement to conduct a formal risk assessment. Refer to ACCO guidelines and to the Capability Manager’s GMCO 1.3 compliant systems for further information.

29. The development method for the ACCOs recognises that the rationale and traceability of many of the established controls (eg codes of practice) are not always well understood or clearly articulated. Hazard and risk identification is often implicit rather than explicit in codes of practice, and their development is often driven in response to adverse events rather than in the context of the outcomes or objectives of the enterprise. Thus, the codes tend to focus on a particular functional area or outcome, such as engineering, finance, safety or environment.
30. In addition, many codes are developed with a different aim in mind and may be misaligned with a Capability Manager’s desired outcome and intent. For example, civilian ship survivability codes provide a limited focus on survivability of the ship with a primary focus on preservation of life. That is, the intention is to provide a platform that will survive for sufficient time for the ship to be evacuated. For military maritime mission systems, the emphasis is often on different criteria that are intended to ensure that the ship remains afloat and stable to implement recovery action and continue to deliver the operational effect. A reasonably practicable control in this circumstance may be to have increased numbers of ships complement, all who are trained in fire fighting and damage control.

31. The ACCOs therefore provide an outcome-focused goal-based framework of compliance obligations in which to situate, test and apply many existing systems of control, in the context of achieving the Seaworthiness Outcome.

32. The ODSwR will review and challenge ‘good practice’ to determine:
 a. what it was trying to control and why
 b. who proposed the practice and whether they were suitably qualified and experienced
 c. what evidence exists to justify the practice in the Seaworthiness context.

33. As a result, the DSwMS will continually improve the state of good practice in the Seaworthiness context. This is an ongoing function of the ODSwR in accordance with processes one and ten of the DSwMS Operating Model, and in conjunction with stakeholders in the interests of the Defence maritime community.

APPLICATION OF ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION TO MARITIME MISSION SYSTEMS.

34. Figure 3C–3 demonstrates ACCO application to a specific mission system. In summary, the Capability Manager, through the development of the OSI, will determine the activities and conditions which a maritime mission system will engage in, and then determine the applicability of the ACCOs. Where applicable, the Capability Manager will propose solutions (systems of control) to meet the requirements of the ACCO.

35. Irrespective of the mission system, the requirements against each ACCO are the same. However, the solutions proposed by the Capability Manager to meet the requirements may be entirely unique to the specific mission system and its intended use (ie will be determined by the context as described through the OSI, for that mission system).

36. This approach allows for the flexibility the Capability Manager requires to respond to the regulations without constraining solutions or enforcing solutions that do not fit the context. For example, to achieve a particular requirement of ACCO Functional Objective 2.1 (establish, monitor and maintain situational awareness), a guided missile destroyer may require a primary, secondary and tertiary navigation system. To achieve the particular requirement of the regulation in the case of a small workboat, a control may be presented that only requires it to remain in line-of-sight of land and comply with local State Regulations for small craft.

37. The Capability Manager will present solutions to the regulator, which addresses the requirements of the ACCO, as PMOC. The regulator will then work with the regulated to determine if the requirements are met and the solution was
proposed by Suitably Qualified and Experienced Personnel. Where these conditions are met, the solution will be deemed an acceptable means of compliance (AMOC).

38. In certain circumstances the DSwR may direct a particular solution, referred to as a directed means of compliance (DMOC). This may occur:
 a. In response to prescribed legislation.
 b. Where Defence direction is provided from other third line of defence policy owners.
 c. In cases where the regulator is satisfied that only a particular solution will provide the required level of hazard and risk control. In this case, such DMOC are expected to be the exception.

Figure 3C–3 Simplified application of ACCO to a mission system

39. The DSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (see guidance for further details).
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
INTRODUCTION

4.1 The Defence Seaworthiness Management System (DSwMS) comprises a Regulatory Framework, Risk Management and Assurance Framework and Operating Model as described in Chapter 1. This chapter describes the DSwMS Risk Management and Assurance Framework, which is based on the enterprise risk governance concept of three ‘lines of defence’ and which:

- provides a formal three lines of defence structure to support risk based decision-making and oversight in complex enterprises/undertakings where:
 - (1) the first line comprises the business and operations activities and management where risks are controlled directly, and on a day-to-day basis
 - (2) the second line comprises the systems of control which act on the first line (including the provision of supporting systems)
 - (3) the third line comprises enterprise-wide systems of control in response to the objectives and outcomes required by the enterprise, related government direction and legislation
- establishes clear accountabilities for consideration of, and compliance with, the DSwMS compliance obligations and which align along the three lines where:
 - (1) risk is categorised\(^{30}\) in a manner which facilitates identification of appropriate management methods, and alignment of decision making roles and functions accordingly
 - (2) risk ownership is clearly identified
 - (3) independent levels of risk oversight and assurance are provided
- through assurance, provides supporting evidence to justify confidence that hazards and risks to the achievement of the Seaworthiness Outcome are being controlled and that it is reasonable to expect that the Seaworthiness Outcome is being achieved.

AIM

4.2 This chapter describes the DSwMS Risk Management and Assurance Framework and its application in detail.

\(^{30}\) The approach to managing risks of different types within a given category can vary significantly and must be aligned to the enterprise objectives, management roles, responsibilities and accountabilities; if risk management is to be effective. A DSwMS risk categorisation (a taxonomy) is provided in Annex 4A to facilitate these considerations.
GLOSSARY

4.3 Definitions, acronyms and abbreviations relevant to the DSwMS Manual (DSwMSMAN) are detailed in the Glossary.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM RISK MANAGEMENT AND ASSURANCE FRAMEWORK – PURPOSE

4.4 The DSwMS Risk Management and Assurance Framework constitutes the enterprise-wide governance and hazard/risk management framework for the achievement of the Seaworthiness Outcome. The purpose of the DSwMS Risk Management and Assurance Framework is to:

a. articulate the DSwMS hazard and risk management and assurance context in enterprise terms
b. align duty holder accountabilities with application of the DSwMS compliance obligations to control hazards and risks to the achievement of the Seaworthiness Outcome
c. provide, through assurance activities aligned to the DSwMS risk management and assurance framework, the means to verify the implementation and performance of agreed\(^{31}\) controls for hazards and risks to the achievement of the Seaworthiness Outcome
d. articulate hazard and risk information to those best placed to act, and who have a duty to act, where agreed controls for hazards and risks to the achievement of the Seaworthiness Outcome are not performing as required.

4.5 The DSwMS Risk Management and Assurance Framework ensures that risk management and assurance information is aligned to duty holders’ roles, responsibilities and accountabilities and to DSwMS hazard and risk management policy, principles and regulatory controls (DSwMS compliance obligations).

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM RISK MANAGEMENT AND ASSURANCE FRAMEWORK – DESIGN CONCEPT

THE ‘THREE LINES OF DEFENCE’ APPROACH TO HAZARD AND RISK MANAGEMENT AND ASSURANCE

4.6 Figure 4–1 provides a graphical representation of the DSwMS Risk Management and Assurance Framework in support of the discussion and guidance that follows.

\(^{31}\) As agreed between the Capability Manager and the DSwR, as applicable to the subject maritime mission system and its enabling support system. The mechanism for this agreement is through a compliance strategy developed in accordance with DSwMS Operating Model.
4.7 Roles, responsibilities and accountabilities for managing hazards and risks to the achievement of the Seaworthiness Outcome are determined by the context of the duty holder with respect the three ‘lines of defence’ as shown in Figure 4–1. The principal considerations are:

a. where the duty holder sits with respect to the lines of defence

b. what the source of the hazards and risks to the achievement of the Seaworthiness Outcome is

c. what control the duty holder exercises over those hazards and risks and through what method they exercise that control.

4.8 In the DSwMS the specific duty holders are:

A duty holder may have accountabilities in more than one line of defence. From a risk management perspective, it is important to recognise and maintain as far as possible, independence of risk management functions across the lines of defence.
a. third line of defence: the Defence Seaworthiness Authority (DSwA) and Defence Seaworthiness Regulator (DSwR)
b. second line of defence: the Capability Managers and those duty holders identified through compliance with Governance and Management Compliance Obligation (GMCO) 1.1 and 1.4
c. first line of defence: duty holders responsive to Capability Managers and to those duty holders defined in subparagraph b above.

4.9 The following paragraphs describe how hazards and risks to the achievement of the Seaworthiness Outcome are categorised to provide the risk management and assurance context, and how hazard/risk controls and associated assurance align with roles, responsibilities and accountabilities.

RISK MANAGEMENT CONTEXT

4.10 The first step to any risk management is to understand the context. DSwMS uses two contextual aids to consider risk management in context of the Defence Enterprise:

a. the three lines of defence enterprise Risk Management and Assurance Framework (discussed above), and
b. a system of risk categorisation (a taxonomy) to ensure consistency of discussion and risk management considerations.

4.11 A risk taxonomy is a comprehensive, common and stable set of risk categories that is used within an organisation. A taxonomy is important because:

a. Different words/labels may be applied to discussion around risk depending on the context of discussion and the role of those engaged in it. These same words/labels may take on different meanings when considered from a different point of view. A risk taxonomy provides a framework within which to coordinate and achieve consistent risk considerations and discussions.

b. Defence risk management spans everything from day-to-day working level decisions and activities through to those affecting the enterprise as a whole (eg performing formal safety risk assessments to inform Orders, Instructions and Publications (OIP), through planning operational activities, to long term Defence committee decisions requiring sound appreciation of strategic and external risk). It is essential to identify the types of risks within a given category, as different types require different assessment and treatment approaches and techniques.

c. Where risk is not clearly identified, categorised and defined (characterised), confusion is likely to arise and risk assessment and management actions may, for example, fail to consider all types of risk relating to the matter at hand or apply inappropriate approaches or techniques.

4.12 Providing a comprehensive set of risk categories:

a. encourages those involved in risk identification to consider all types of risks that could affect the organisation's objectives
b. facilitates the consideration of risks from across the organisation
c. facilitates comparative analysis of an organisation's risks over time.
DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM RISK TAXONOMY

4.13 An overview of the DSwMS risk taxonomy is provided in Annex 4A. In this taxonomy, risk is categorised as:

a. source
b. exposure and consequence, and

c. function.

4.14 The following paragraphs discuss each of these categories in detail.

4.15 **Source.** The source of risk may lead to the requirement for different tools and techniques to identify, assess and control risks. A one-size-fits-all approach to risk can oversimplify the problem and lead to inappropriate identification, assessment or application of controls noting it is often the sources of the risk which determines the most appropriate approach. The sources are defined as internal, external and strategic, where:

a. Internal risks are sometimes referred to as ‘preventable’ in so far as the hazards, risks and controls are inherent in the activities undertaken to achieve the day-to-day operations of the business or enterprise and are within our control. They are often analysed through methods such as bowtie analysis or fishbone analysis.

b. Strategic risks are connected to the enterprise outcomes and are often taken on intentionally by an organisation. These risks are often analysed through means such as scenario analysis or ‘Why, Because’ analysis.

c. External risks are outside of the control of the organisation however the organisation may be able to respond should the risk be realised, through appropriate planning. These risks are generally dealt with through scenarios or war gaming.

4.16 **Exposure and Consequence.** With limited resources, an understanding of the exposure to certain risks and their consequences helps better target where controls and assurance resources should be applied and secondly, the types of analysis that may be required. For example, an assessment of local exposure with minor consequences may lend itself to a periodic spot check. A systemic failing across multiple mission systems, or degradation of a particular control over time, may only be discovered through some form of trend analysis. The DSwMS characterises conditions, events and associated hazards/risks as follows:

a. **Localised (contained) conditions/events and associated hazards/risks.** Typically low consequence in enterprise terms. Foreseeable with controls derived using Suitably Qualified and Experienced Personnel (SQEP). Examples include conditions/events and associated hazards/risks relating to:

 (1) outputs/artefacts supporting capability management but not central to the achievement of the Seaworthiness Outcome (artefacts not directly controlled by regulation)
(2) small scale (tactical/operational) activities relating to day-to-day work, eg tool/machinery/plant operation and maintenance, general seamanship, etc.

b. **Major conditions/events and associated hazards/risks.** Typically high consequence in enterprise terms. Foreseeable with controls derived using specialist techniques and subject matter experts. Examples include conditions/events and associated hazards/risks relating to:

(1) activities and related outputs/artefacts supporting capability management and central to the achievement of the Seaworthiness Outcome (capability management activities and outputs/artefacts subject to specific regulatory control\(^\text{34}\), eg the Capability Manager’s operating and support intent (OSI))

(2) functions and performance of a maritime mission system and/or its enabling support system that are critical to the achievement of the Seaworthiness Outcome and are, therefore, subject to specific regulatory control\(^\text{35}\) – eg platform design characteristics, operating and support criteria (stability, hull integrity, navigation and collision avoidance, aviation operations and critical interoperability, etc).

c. **Chronic conditions and associated hazards/risks.** Typically systemic and insidious (ie ‘slow burners’). Difficult to foresee, identify and quantify. This type creates conditions and associated hazards/risks for localised and major events. These typically require systematic analysis and system wide approaches to control. Examples include hazards/risks relating to suitability of management systems and processes (fitness for intended management purpose), critical workforce competencies, systems resourcing (systemic stress forcing shortcuts and workarounds).\(^\text{36}\) Note that repetitive localised events and consequences may arise through chronic type conditions and result in major consequences – for example repeated exposure to hazardous environmental conditions (eg substances, noise, radiation) may result in an overall degree of harm with respect to the achievement of the Seaworthiness Outcome that is damaging in an enterprise context.

4.17 **Function.** An understanding of the functional view of risk leads to an understanding of the skill sets and practises required to manage the conditions and risks identified above, however, as research identifies\(^\text{37}\), considering risks in

\(^\text{33}\) DSwMS Governance and Management Compliance Obligation (GMCO) 1.3 is directed toward the need for systems of control acting at this level for hazards and risks of these kinds. Some DSwMS Activity and Condition Based Compliance Obligations (ACCOs) may also act here.

\(^\text{34}\) DSwMS GMCOs– Goals 2 and 3

\(^\text{35}\) DSwMS ACCOs

\(^\text{36}\) DSwMS GMCOs are derived through analysis of conditions of these kinds

functionally independent silos is one of the biggest problems of risk management globally.

4.18 Risks should always be considered in the context of the overall outcomes and objectives of the enterprise. The functional view can provide a good understanding of the skills and experience necessary to identify, assess or control various risks, and conduct assurance, but should not be the start point. Organisations tend to be more comfortable looking at risk in this way (engineering, technical, finance, safety, environment etc) but it does not follow that independently managing risks in this way sums to achieve the business/enterprise outcomes. Moreover, these functional views are not independent in and of themselves, let alone the outcome. For example, a risk commonly referred to as a 'technical risk' and associated with the function and operation of an item of machinery, will naturally require safety management practices be followed. However, functional or operating failures of the machinery could also lead to fuel spill and environmental consequences, loss of opportunity, revenue for an enterprise and so on. Thus the risks to the outcome should highlight the need for technical, safety, environmental and financial expertise; not technical, safety, environmental and financial risk management frameworks. That is, there should be one risk management framework that looks at risks in the context of the outcome, and which governs and coordinates the management of risk across the functions required to deliver that outcome.

4.19 A detailed risk taxonomy is included in Annex 4A.

HAZARD/RISK CONTROL

4.20 The DSwMS approach to risk management requires, in the first instance, that SQEP identify all foreseeable hazards, risks and known controls, and implement the known controls, while being mindful to take into account any limitations that may apply or any reasonably practicable improvements that may be available in the circumstances. Thereafter SQEP determine if further risk assessment and treatment action is warranted.38 This approach is sometimes referred to as the due diligence or 'good practice' approach as it ensures that the basis to act is founded in recognised good practice and ensuring that good practices are being followed. This maintains a focus on the implementation of controls for which a precedent has been set and which are therefore significant in considerations of reasonable practicability. This does not preclude the use of alternative controls, however where adopted those controls must be justified and defensible in the circumstances. Further guidance on the due diligence approach to risk management is provided at the DSwMS website.39

4.21 Issues and events (ie realised risks) relating to the achievement of the Seaworthiness Outcome ultimately manifest in the first line of defence (LoD). However, accountability for appropriate systems of hazard/risk control and assurance is determined by the lines of defence in which the duty holder acts. The DSwMS Risk

38 The determination will take account of any mandated (legislated or Defence specific) requirements for formal risk assessment. Refer DSwMS website for further information.

Management and Assurance Framework aligns roles, responsibilities and accountabilities for hazard/risk control as follows:

a. **First line of defence (1LoD).** DSwMS Activity and Condition Based Compliance Obligations (ACCOs) act to assure systems of hazard and risk control, specific to mission systems and their enabling support systems, satisfy DSwMS performance requirements at the 1LoD. The 1LoD is accountable to take ownership of and manage hazards/risks in the day-to-day undertaking through:

 (1) mindful application of, and self assurance against, those systems of control

 (2) where necessary, by using management systems and governance arrangements required, or provided, by the 2LoD.

b. **Second line of defence (2LoD).** DSwMS GMCOs act on governance and management systems to ensure they satisfy DSwMS performance requirements for control of hazards and risks to the achievement of the Seaworthiness Outcome. The 2LoD is typically accountable for establishing and maintaining those governance and management systems to ensure ACCOs are applied and controls maintained at the 1LoD through a systemic approach. The 2LoD also provides:

 (1) advice and support for 1LoD for implementation of GMCO-compliant systems

 (2) the Capability Manager with assurances independent of the 1LoD.

c. **Third line of defence (3LoD).** Provides an enterprise-wide system of control through provision of the DSwMS to apply regulatory instruments and assure achievement of the Seaworthiness Outcome for all maritime mission systems and enabling support systems across the enterprise.

ASSURANCE CONTEXT

4.22 The DSwMS Risk Management and Assurance Framework aligns roles, responsibilities and accountabilities for hazard and risk management assurance as follows:

a. **First line of defence.** Conducts assurance activities relating to the performance of hazard and risk controls (including systems of control) specific to each maritime mission system and enabling support system within their control.

b. **Second line of defence.** Conducts assurance activities independent of the 1LoD relating to the performance of organisation-wide (Group and Service) governance and management systems and through ‘sector’ hazard and risk

40 In some circumstances, the first lines of defence may be the sole provider of governance and management arrangements subject to DSwMS GMCO performance requirements.

41 For example: DSwMS compliance obligations, Defence seaworthiness instructions (DSwIs), directed means of compliance (DMOCs) and seaworthiness corrective actions (SCAs).
profiling. This essentially checks performance of those governance and management systems against logical groupings of maritime mission systems and their enabling support systems.

c. **Third line of defence.** Conducts enterprise-wide assurance independent of the first and second lines of defence. This includes hazard and risk profiling relating to the performance of the DSwMS against:

(1) the primary DSwMS objective – the achievement of the Seaworthiness Outcome

(2) externally imposed compliance obligations (typically imposed by legislative requirements).

4.23 The specific hazard and risk management and assurance needs, requirements and reporting mechanisms within each region of the diagram at Figure 4–1 vary according to the character of the hazard/risk and the context in which decision making is being made – ie enterprise-wide, corporate, or day-to-day capability management and operational levels. Specific guidance regarding hazards, risks, controls, assurance and related roles, responsibilities and accountabilities is provided at the [DSwMS website].

APPLICATION

4.24 The DSwMS Risk Management and Assurance Framework, represented through the ‘three lines of defence’ approach, enables duty holders to better understand their specific context for risk management within the enterprise as it aligns to their specific roles, responsibilities and accountabilities.

4.25 The risk taxonomy allows duty holders to better understand and therefore manage the risks identified within their context using methods and techniques aligned to the categories described in the taxonomy.

4.26 These two contextual aids work together to guide the application of what people commonly understand as the approach to risk management as it is described/prescribed through standards such as ISO 31000 and Australian legislation, in a manner appropriate to their context.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM ASSURANCE AND DUE DILIGENCE

4.27 Legislative due diligence duties require the duty holder to:

a. acquire up-to-date knowledge of safety and environmental protection matters as they pertain to seaworthiness management

b. have an understanding of the hazards and risks associated with acquiring and operating maritime capability as they pertain to the achievement of the Seaworthiness Outcome

42 http://dnet/Seaworthiness/Pages/Home.aspx

43 For the purposes of work health and safety, these are duties of an ‘officer’ under the [Work Health and Safety Act 2011](https://www.legislation.gov.au/Details/C2016C00887)
c. ensure use of appropriate resources and processes to eliminate or minimise those hazards and risks

d. ensure use of appropriate processes to receive information about incidents, hazards and risks and responding in a timely manner to that information

e. ensure use of processes to comply with any duty or obligation under relevant federal/state/territory legislation – eg safety and environmental protection laws

f. verify the ongoing suitability and effectiveness of systems of control.

4.28 The DSwMS is an enterprise-wide system for control, through regulation, of those aspects of capability management across the CLC necessary to assure the achievement of the Seaworthiness Outcome. In the first instance, it is a 3LoD response to requirement 4.27(b) above. However, the DSwMS also enables duty holders to discharge other due diligence obligations as those obligations relate to the achievement of the Seaworthiness Outcome. It does so through provision of information and advice relating to the due diligence requirements, where that advice is proactively sought or otherwise provided through assurance and reporting activities.

4.29 DSwMS assurance activities are a means through which due diligence requirements for receiving and responding to hazard/risk information, including verifying effectiveness of systems of control, is supported in accordance with duty holders’ roles, responsibilities and accountabilities. Duty holders’ hazard and risk management responses and assurance activities are to take account of:

a. Short, medium and long term consequences as they relate to the achievement of the Seaworthiness Outcome.

b. Information relating to the suitability and performance of governance and management systems that have a role in the control of hazards and risks to the achievement of the Seaworthiness Outcome. This information typically relates to compliance by the 2LoD with GMCOs and the 3LoD with externally

44 It is not, however, the only system of regulation operating in the third line of defence. The DSwMS operates-in a co-regulated community comprising other Defence regulatory authorities, policy makers and regulators within the broader Australian community. The DSwR is accountable to provide the interface with those other regulators impacting the DSwMS Regulatory Framework, as well as with international bodies who share an interest in managing for seaworthiness.

45 The obligation to exercise proactive due diligence remains with duty holders; the DSwMS is purely an enabler.

46 Noting that the DSwMS cannot develop and apply regulation without a comprehensive knowledge of the undertaking, the legal context and the relationship between governance, due diligence, risk management and assurance in the Defence undertaking. It is a central source of information and support for those having explicit due diligence duties in legislation.

47 Noting, for example, the separation of roles, responsibilities and accountabilities for providing effective governance and management systems (primarily second and third line of defence), from roles, responsibilities and accountabilities when operating within (ie using) those systems (first line of defence).
imposed regulation/compliance obligations. Hazards, risks and issues of these kinds are generally systemic and require medium to long-term action to resolve permanently. Short-term actions may be necessary to address systemic issues that impact on the achievement of the seaworthiness outcome by a specific maritime mission system and its enabling support system (for example, inability to provide Suitably Qualified and Experienced Personnel to perform through-life supportability analysis for a major mission system where the long-term consequence is fleet cannibalisation).

c. Information generated and articulated through the application/operation of governance and management systems that have a role in control of hazards and risks to the achievement of the Seaworthiness Outcome. This information typically relates to compliance with ACCO requirements (ie the performance of hazard and risk controls applicable to a specific maritime mission system and its enabling support system). Hazards/risks and issues of these kinds generally require short to medium-term chain of command and management response from the 1LoD. They may, however, be escalated to the second or third lines of defence for longer term resolution, or where specific DSwMS or enterprise thresholds (eg Defence risk materiality thresholds) are reached or exceeded.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM ASSURANCE AND REPORTING

4.30 The DSwMS Risk Management and Assurance Framework is enacted via Processes 3, 4, 5, 6 and 9 of the DSwMS Operating Model. These processes require the DSwR and 2LoD duty holders to develop assurance plans and to conduct assurance activities in accordance with those plans. General assurance and reporting direction follows; see Volume 1, Part 1, Chapter 5 for specific direction and guidance.

FIRST LINE OF DEFENCE

4.31 1LoD duty holders are best placed to act on hazards and risks to the achievement of the Seaworthiness Outcome as they relate to day-to-day capability management across the CLC and to operating and support activities. Depending on a duty holder’s role and responsibilities in the 1LoD, these hazards and risks may require a short, medium or long-term view, for example:

a. those responsible in the upstream activities of the CLC are making decisions which may result in significant hazards and risks to the achievement of the Seaworthiness Outcome in the medium to long term

b. those acting during the in-service phase of the CLC are generally exposed to hazards and risks which require short (immediate) to medium term action.

4.32 In both cases, hazard/risk information may require escalation through governance and management arrangements for longer term resolution.

4.33 1LoD duty holders, as those most exposed to and best placed to act where hazards and risks manifest as issues and events, are required to take ownership of these hazards and risks. Further, they must:

a. familiarise themselves with the management systems and physical systems (including associated OIP) on which they depend for the control of hazards and risks to the achievement of the Seaworthiness Outcome
b. assure themselves, including seeking assurances from other duty holders\(^{48}\) where necessary, that these systems are:
 (1) suitable to control these hazards and risks
 (2) adequately maintained and resourced
 (3) applied as intended

c. where shortcomings are identified:
 (1) take hazard/risk control actions appropriate to the circumstances
 (2) report the shortcomings, through their chain of command and management in accordance with hazard/risk management policy and accountability frameworks provided by duty holders in the 2LoD, for action by responsible and accountable duty holders.

SECOND LINE OF DEFENCE

4.34 2LoD duty holders are best placed to:

a. take, and act on, a medium to long-term view of the Capability Manager’s objectives

b. monitor strategic and systemic hazards and risks to organisational (Group and Service) governance and hazard/risk management systems for which they are accountable.

4.35 Examples include organisational governance and hazard/risk management systems and arrangements necessary to control hazards and risks to activities and artefacts that are regulated through DSwMS compliance obligations (eg functions necessary to define and manage the OSI, or to assure credible systems safety management).

4.36 2LoD duty holders are therefore required to:

a. assure themselves (including seeking assurances from other duty holders - see 4.33(b)) that they have established and are maintaining governance and management systems that satisfy DSwMS performance requirements for control of hazards and risks to the achievement of the Seaworthiness Outcome, including but not limited to ACCOs

b. provide assurance to the Capability Manager, independent of the 1LoD, of the application and performance of systems of hazard and risk control within the 1LoD

c. where those systems do not satisfy the DSwMS requirements:
 (1) take appropriate hazard/risk control action
 (2) report the shortcomings, through their chain of command and management in accordance with hazard/risk management policy and

\(^{48}\) For example, capability enabling and support services responsive to, but not owned by the Capability Manager (Capability Acquisition and Sustainment Group, Estate and Infrastructure Group, etc).
accountability frameworks provided by duty holders in the 2LoD, for action by responsible and accountable duty holders.

4.37 To enable first and second lines of defence assurance and hazard/risk management response in a structured and coherent manner aligned to the DSwMS Risk Management and Assurance Framework, the DSwR requires that Capability Managers develop a DSwMS compliance strategy and associated assurance plan. The DSwR uses information from endorsed compliance strategies and associated assurance plans to develop a DSwMS Assurance Master Plan in support of 3LoD reporting requirements.

THIRD LINE OF DEFENCE

4.38 3LoD duty holders are best placed to:

a. take, and act on, a medium to long-term view of the enterprise
b. monitor trends in strategic and systemic hazards and risks to enterprise-wide governance and management systems and arrangements for which they are accountable.

4.39 The principal system of strategic control for the achievement of the Seaworthiness Outcome is the DSwMS. 3LoD duty holders therefore require:

a. assurances that the DSwMS is fit for purpose, implemented and effective
b. where it is not, guidance to support decisions regarding corrective action.

4.40 3LoD duty holders may also receive, for short-term consideration and action, DSwMS hazard/risk information through escalation processes where:

a. Defence risk materiality thresholds are reached or exceeded
b. trigger conditions set through the DSwMS are reached or exceeded.

This information may be articulated through the DSwR/DSwA, through first and second lines of defence duty holders and their respective assurance arrangements, or through both.

4.41 The DSwA is to provide to the level 3 authorities\(^49\):

a. an annual report which:

 (1) addresses the continued suitability of the DSwMS, its implementation status and all matters as necessary to support 3LoD duty holders in discharge of their due diligence duties (typically informed through the conduct of the DSwMS monitoring and continual improvement process)

 (2) provides an overarching portfolio risk profile regarding the risk trends in capability management for the achievement of the Seaworthiness Outcome (typically informed through the conduct of assurance and analysis in accordance with the assurance master plan developed and maintained by the Office of the DSwR (ODSwR))

\(^{49}\) See Volume 1, Part 1, Chapter 2 for details regarding those authorities (individuals with regards to due diligence and associated advisory committees (e.g. Defence Audit and Review Committee)).
b. reporting, through DSwMS escalation mechanisms, for those matters that must be brought to the attention of the 3LoD for immediate or short-term consideration and response.

4.42 For specific guidance on DSwR/DSwA assurance and reporting, see Volume 1, Part 1, Chapter 5.

4.43 For specific guidance on development and management of DSwMS compliance strategies and assurance plans and reporting, see Volume 1, Part 1, Chapter 5.

4.44 For specific guidance regarding application of the DSwMS Risk Management and Assurance Framework across the CLC, refer DSwMS website.

Annex

4A The Defence Seaworthiness Management System risk taxonomy
THE DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM RISK TAXONOMY

Figure 4A–1 Defence Seaworthiness Management System risk taxonomy

- **Source**
 - External
 - Strategic
 - Internal

- **Exposure & Consequence**
 - Exposure
 - Local
 - Major
 - Environmental
 - Operations
 - Support
 - Engineering
 - Finance
 - Training
 - etc.

- **Consequences to**
 - Achievement of task/objective
 - Personnel (safety)
 - Environment
 - Others (eg regulation)

Risks originate from different sources, but the source often determines the method of risk assessment.

Characterising exposure and consequences informs the approach to risk assessment, treatment, and assurance.

Control of hazards and risks typically requires coordinated action across functions and should always be considered in the context of the overall outcomes and objectives of the enterprise. The functional view can provide a good understanding of the skills and experience necessary to identify, assess or control various risks, and conduct assurance, but it should not be the start point (risks should not be considered in functionally independent silos).
CHAPTER 5

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM OPERATING MODEL

INTRODUCTION

5.1 The Defence Seaworthiness Management System (DSwMS) comprises a Regulatory Framework, Risk Management and Assurance Framework and Operating Model as described in Chapter 1. This chapter describes the DSwMS Operating Model, which comprises a series of processes that enacts the two frameworks and embodies the principles of due diligence. It ensures the frameworks are developed, maintained and applied in a mindful and systematic manner through a series of core processes conducted by both the Defence Seaworthiness Regulator (DSwR – the single regulator of the DSwMS) and the regulated.

AIM

5.2 This chapter describes the rationale and design concept of the DSwMS Operating Model. In addition, it describes how the regulated (duty holders, including Capability Managers, Group Heads and Service Chiefs, other practitioners, those in command and line management) will interact with the DSwR to promote the core behaviours of mindfulness, collaboration, accountability and transparency.

GLOSSARY

5.3 Definitions, acronyms and abbreviations relevant to the DSwMS Manual (DSwMSMAN) are detailed in the Glossary.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM OPERATING MODEL – PURPOSE

5.4 The purpose of the DSwMS Operating Model is to enact both the DSwMS regulatory framework and the DSwMS Risk Management and Assurance Framework through the systematic, mindful application of a series of core processes. These core processes constitute activities carried out by both the DSwR and the regulated, which develop, apply and manage the controls to hazards and risks to the Seaworthiness Outcome in a coherent manner. The DSwMS Operating Model embodies the principles of due diligence through the proactive and mindful consideration of hazards and risks within the systems acquired and operated in a seaworthiness context. The DSwMS Operating Model serves to coordinate seaworthiness activities across the Capability Life Cycle (CLC) and bring the appropriate authorities together in a coordinated fashion.

DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM OPERATING MODEL – DESIGN CONCEPT AND CORE PRINCIPLES

THE DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM OPERATING MODEL – DESIGN CONCEPT

5.5 The DSwMS Operating Model is designed around the following considerations:
a. business processes – describe in detail the way of defining, arranging, and physically performing tasks that deliver the Seaworthiness Outcome

b. management systems – identify the performance measures, accountability and decision-making roles, and incentives for the core processes

c. jobs, skills and organisation – define the job activities, organisational structure, skill needs and facility requirements of the required environment

d. values and behaviours – define the written and unwritten cultural rules and customs that must exist in the required environment

e. information technology – define the new objects, applications and architecture required to support the required business processes.

5.6 Specific design information including the design methodology, rationale, and validating information is available via the DSwMS website.51

THE DEFENCE SEAWORTHINESS MANAGEMENT SYSTEM OPERATING MODEL

5.7 Figure 5–1 is a high level representation of the core processes of the DSwMS Operating Model. The specific detail of the core processes is configuration managed by the Office of the DSwR (ODSwR) and can be accessed via the DSwMS website.52 As represented in Figure 5–1, the core processes are carried out by both the DSwR and the regulated with strong collaboration between both.

5.8 The DSwMS Operating Model enacts the DSwMS Regulatory Framework and DSwMS Risk Management and Assurance Framework described in Volume 1, Part 1, Chapter 3 and Chapter 4 through the relevant processes:

a. Processes 1 and 2 enact the DSwMS regulatory framework by articulating the activities required to both develop regulations and respond to them.

b. Processes 3, 4, 5 and 6 enact the DSwMS Risk Management and Assurance Framework by highlighting the risk management accountabilities and by articulating the activities required to plan and conduct assurance in response to the accountabilities. Assurance is done by both the DSwR and the regulated, in order to demonstrate sufficient evidence exists to provide justified confidence in the Seaworthiness Outcome.

c. Processes 7, 8, 9 and 10 support the other processes to provide a coherent system with the ability to continuously improve.

51 http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx

52 http://drnet/Seaworthiness/Pages/Home.aspx
5.9 The following describes the rationale and the outputs from each of the processes in Figure 5–1.

PROCESS 1 – DEFINE COMPLIANCE REQUIREMENTS

5.10 In the first instance, the DSwR defines controls to hazards and risks in the context of the Seaworthiness Outcome through regulations as described by the DSwMS regulatory framework in Volume 1, Part 1, Chapter 3. This process describes a structured approach to the development, testing and implementation of DSwMS compliance obligations.

5.11 The development of, and change to, regulations is instigated via three sources:

a. **External event.** A major external event may provide insights into the management of hazards and risks in other contexts that are applicable in the seaworthiness context. Examples may include: lessons from the Challenger space shuttle disaster; corporate governance lessons in the private sector; hazard/risk management lessons in the capital works sector; and lessons from Australian National Audit Office audits. Advice may be sought from the DSwR with respect to external events as they apply in the seaworthiness context (see Process 8 – Provide advice).

b. **Internal analysis or event.** Assurance activity, trend analysis or other risk analysis (conducted through Process 10 – Demonstrate value and continuously improve) or other analysis of events internal to Defence, may provide insights into the management of hazards and risks that are
applicable in the seaworthiness context. Examples may include Defence internal reviews and incident/accident investigations such as Rizzo, Black, Defence Enterprise Risk Management reports and the First Principles Review. Advice may be sought from the DSwR with respect to internal events and analysis as it applies in the seaworthiness context through Process 8 – Provide advice.

c. **Legislative requirement.** Unless specifically exempt, Defence is required to comply with all applicable federal/state/territory legislation. Legislation applicable in the seaworthiness context is generally that which relates to safety or the environment. The activities within this process require the DSwR to understand, so far as is reasonably practicable (SFARP), all Australian legislation that applies, or may apply, to Defence with respect to seaworthiness. The DSwR will also understand, SFARP, all relevant international conventions applicable to seaworthiness that are not yet enacted through Australian federal/state/territory legislation; examples may include provisions under the *International Convention for Prevention of Pollution from Ships*. Advice may be sought from the DSwR with respect to other countries’ legislation as it applies in the seaworthiness context (see Process 8 – Provide advice).

5.12 In certain circumstances, legislation may be applicable to Defence with respect to seaworthiness, however the legislation may be overly prescriptive or developed for a different context. Examples of this may include legislation detailing requirements that:

a. would severely compromise the operational effect required of a mission system, such as waste management with respect to a submarine

b. may result in inappropriate and unintended consequences, and may include statutory regulations detailing activity specific systems of work or codes of practice which were never contemplated in a military maritime context; such as diving, working from heights, electrical work etc.

5.13 In cases where application of legislation is not appropriate to context and compliance would affect the ability to achieve the Seaworthiness Outcome, this process identifies the role of the DSwR in advocacy to the appropriate authority, in order to seek an exemption or a change to the relevant legislation. Where such circumstances exist, other appropriate controls will be identified and applied to best satisfy the intent of the legislation.

54 *Review of the Defence Accountability Framework*, Associate Professor Rufus Black, January 2011

55 http://dnet.defence.gov.au/AssociateSecretary/first-principles/Pages/default.aspx

5.14 The DSWr will conduct appropriate impact assessment of new or changing regulation through this process, testing against the following criteria to ensure that any seaworthiness regulation is:

a. **Suitable.** Does the regulation provide sufficient information to identify a suitable system of control to manage identified hazards or risks (will it achieve the outcome)?

b. **Feasible.** Is the regulation possible to implement/comply with? This criteria addresses whether the regulation is practicable.

c. **Acceptable.** Can the application of the regulation be met within organisation constraints, in foreseeable circumstances? This criteria addresses whether the regulation is reasonable.

d. **Distinguishable.** Is the regulation sufficiently different to other regulations? Over-regulation can occur where multiple regulations aim to control the same hazards or risks.

e. **Sustainable.** Is the regulation viable over the foreseeable future?

5.15 Further guidance to the applications of Process 1 – Define compliance requirements, can be accessed via the [DSwMS website](http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx).

PROCESS 2 – DEVELOP AND MAINTAIN COMPLIANCE STRATEGY

5.16 This process describes how the regulated respond to the regulations through the development of an appropriate compliance strategy.

5.17 The DSWr requires that duty holders demonstrate compliance with all applicable regulations through this process. Consistent with outcome-focused goal-based regulation, DSWr does not prescribe solutions. Rather, solutions are tailored to context by the regulated community to meet the requirements of the regulation and to demonstrate that hazards and risks are controlled so far as is reasonably practicable. Therefore, the concept of a waiver against a DSwMS regulation is not valid as the regulation is either applicable or it is not; and the solution is tailored up front to meet the relevant requirements. Where for example, a mission system is entering a disposal phase, a previously accepted system of control may be deemed to incur an unreasonable cost in the new context. In this circumstance the operating and support intent (OSI) would be reviewed and an alternative system of control would be presented by the regulated with evidence that it is reasonably practicable in the new context. Rather than a waiver against a regulation, this will result in an update of the compliance strategy.

5.18 The compliance strategy is the means by which the regulated describe how they intend to comply with the regulations as described in Volume 1, Part 1, [Chapter 3](http://www.legislation.gov.au/Series/C2011A00137). It is expected that the means of compliance (MOC) with the Governance and Management Compliance Obligations (GMCOs) will be similar for all maritime

57 Noting, for example, the specific test for reasonable practicability under the Work Health and Safety Act 2011 ([WHS Act](http://www.legislation.gov.au/Series/C2011A00137))

58 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
mission systems within a particular group or service. For example, the governance arrangements articulated by Navy, in response to GMCO 1.1, would be likely applicable across all maritime mission systems within Navy. Similarly, Army’s governance arrangements would be likely applicable to all maritime mission systems within Army, but might be substantially different to those of other Groups or Services.

5.19 With respect to the Activity and Condition Based Compliance Obligations (ACCOs), the compliance strategy may be represented at a group of classes, class or discrete mission system level. The form the compliance strategy takes will be dependent on how common or unique the systems of control are when presented to meet the requirements of the regulations.

5.20 The Capability Manager is required to develop, review or update a compliance strategy for any of the following reasons:

a. a new regulation has been issued by the DSwR
b. a regulation has been amended by the DSwR
c. a configuration change, of such significance that it has a significant and enduring impact on the OSI has occurred
d. a change to any component of the OSI has occurred, or is possible
e. a new project, generally for a new maritime mission system or a significant upgrade to an existing maritime mission system (for example, a mid-life upgrade) is in progress
f. an assurance activity, by either the DSwR or the regulated, has identified a requirement to change any given MOC.

5.21 In general, the regulated will take the following steps in development, review or update of a compliance strategy:

a. Assess the applicable regulations with respect to the maritime mission system and its enabling support system.
b. Identify all relevant authorities and stakeholders involved in determining the MOC. Those making declarations as to the efficacy of a MOC against a regulation must be determined, by the duty holder, to be a Suitably Qualified and Experienced Person (SQEP).
c. Assess the relevant regulation, in the context of the maritime mission system and its enabling support system, in order to determine the PMOC.
d. Develop and propose all relevant MOC to the DSwR as PMOC.

5.22 The PMOC is the solution defined by the regulated that best meets the regulation for their context. The sum of all required MOCs to meet the regulations constitutes the compliance strategy. As a minimum, a compliance strategy must contain the following:

a. The relevant regulations.
b. The PMOC with respect to the regulations.
c. The justification of the PMOC, including the measures that will demonstrate that the PMOC satisfies the requirements of the regulation (or that an action plan is in place to subsequently meet the regulation).
d. The person who made the determination that the PMOC would satisfy the regulation.

e. A declaration by the duty holder that the person determining the PMOC is suitably qualified and experienced.

f. Any assurance requirements for the PMOC. For example, maintaining 'class' with a given class society may be presented as a PMOC against a given regulation. This may bring mandatory assurance requirements with it.

5.23 Although the concept of a waiver is not valid against a DSwMS regulation, it is recognised that waivers may manifest in DSwMS at the first and second lines of defence. For example, a particular standard may be presented as a MOC, yet aspects of that standard may not be applicable in the context. In this circumstance, a Capability Manager may request a waiver from the standard owner or appropriate authority and provide an alternative agreed to by a suitably qualified and experienced authority. As indicated above, this ensures any tailoring of requirements to context is taken into account before the solution is presented to the regulator as a PMOC in a compliance strategy.

5.24 By presenting the compliance strategy, the Capability Manager declares that they have:

 a. justified confidence that the compliance strategy (including any associated action plan) is capable of achieving the Seaworthiness Outcome

 b. accepted accountability for its implementation and execution (ie will maintain compliance in accordance with the strategy).

5.25 The DSwR must be satisfied that the PMOC can be measured against the requirements of the relevant regulation. Thus the DSwR will deem a means of compliance as 'acceptable' where:

 a. the duty holder can demonstrate that it can be measured against the requirements of the regulation

 b. that it was proposed by a Suitably Qualified and Experienced Person.

5.26 In accordance with Volume 1, Part 1, Chapter 2 and Chapter 3, the DSwR is not a 'permissioning authority'. Due diligence requires the duty holder have a general understanding of the hazards and risks in the context of their business and apply suitably resourced systems of control. The DSwR interprets legislation, and aims to control hazards and risks to the Seaworthiness Outcome through the regulations. The regulations thus provide a framework to aid the duty holder in assessing risks to the Seaworthiness Outcome but in no way absolve the duty holder of their accountability in managing risks in their undertaking.

5.27 An acceptable MOC (AMOC) may be used as guidance for development of a compliance strategy for a different mission system, however, as discussed at Volume 1, Part 1, Chapter 3, the MOC may only be applicable in the context of a particular maritime mission system or class of maritime mission system. In meeting a DSwMS compliance obligation, acceptable means of compliance and assurance may vary depending on:

 a. the mission and enabling support system in question

 b. relevant applicable management systems and processes

 c. who sponsors those systems and processes
5.28 Examples of AMOCs are provided in Volume 1, Part 1, Chapter 3.

5.29 In certain circumstances, legislation may prescribe the exact way in which compliance must be demonstrated/achieved. Similarly, in certain circumstances, the DSwA or the DSwR may determine that they will be satisfied only by a specific approach to compliance. Such directed means of compliance (DMOC) are expected to be the exception. Where a DMOC is deemed necessary, it will be issued by the DSwR via a Defence Seaworthiness Instruction (DSwI).

5.30 Extant DMOC can be accessed via the DSwMS website.

5.31 The DSwR can provide further guidance on compliance strategy structure and development where required.

5.32 Further guidance to the applications of Process 2 – Develop and Maintain Compliance Strategy, can be accessed via the DSwMS website.

PROCESS 3 – DEVELOP ASSURANCE PLAN (REGULATED)

5.33 This process describes the requirement for the regulated to plan appropriate assurance activities in accordance with the DSwMS Risk Management and Assurance Framework discussed in Volume 1, Part 1, Chapter 4. This process should be read in conjunction with Process 5 – Provide assurance (regulated). As reflected by GMCO 1.3, and required through due diligence, the duty holder is required to assure that controls intended to address hazards and risks to the Seaworthiness Outcome are resourced, in place and effective for their intended purpose. In accordance with the DSwMS Regulatory Framework discussed in Volume 1, Part 1, Chapter 3, and the DSwMS Risk Management and Assurance Framework discussed in Volume 1, Part 1, Chapter 4, assurance is to be conducted by the duty holder at both the first line of defence, where DSwMS Activity and Condition Based Compliance Obligations operate; and the second line of defence, where DSwMS Governance and Management Compliance Obligations operate.

5.34 The duty holder will plan and conduct assurance as required, based on hazards and risks to the Seaworthiness Outcome. As such, this process is not intended to be prescriptive, but rather provide guidance to duty holders on principles around good practice with respect to assurance.

5.35 The assurance plan, and subsequent assurance activities, contribute to the body of evidence required by the duty holder to provide justified confidence in the Seaworthiness Outcome as discussed in Volume 1, Part 1, Chapter 1.

5.36 It is expected that the Capability Manager will, SFARP, understand the totality of assurance requirements and subsequent activities as they pertain to seaworthiness. In many circumstances, assurance activities may be conducted by

59 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx

60 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx

61 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
other groups and services, or by external bodies, which are not under the authority of the Capability Manager. Where such assurance activities occur, by other groups or services, the Capability Manager may reasonably expect that these are done on their behalf in the seaworthiness context, and may, through GMCO 1.2 (Consultation, Cooperation and Coordination), establish appropriate mechanisms to influence assurance activities to meet their requirements. An example may be where contractor performance is assured by another group or service. Where the contractor performance is directly relevant to the Seaworthiness Outcome, the Capability Manager may establish appropriate mechanisms with the other Group or Service to request targeted assurance activity.

5.37 Where assurance activities are conducted by external bodies, that contribute to an understanding of hazards and risks to the Seaworthiness Outcome, or controls as they pertain to hazards and risks to the Seaworthiness Outcome, the duty holder is expected to review and utilise such information in making judgements as they apply to seaworthiness.

5.38 In planning assurance activities, the duty holder may seek to coordinate assurance activities by other groups and services where practicable.

5.39 In a resource constrained environment, assurance activities should be targeted based on an assessment of hazards and risks. In general, inputs to the assurance plan may include but are not limited to:

a. mission system compliance strategies, particularly where MOC prescribe assurance activities
b. hazard and risk assessment
c. outputs from previous assurance activities such as:
 (1) trend analysis
 (2) recognised non compliance
 (3) risk or issue in one area which may be applicable in another
d. periodic requirement
e. spot check
f. a new regulation or requirement.

5.40 Where it may be appropriate to conduct assurance activities with respect to a particular mission system, based on an understanding of risk to the Seaworthiness Outcome, in many circumstances it may be more appropriate to conduct assurance activities based on:

a. one or more of the fundamental inputs to capability (FIC) – such as facilities, personnel or training
b. geographical region
c. class of mission systems
d. theme – such as solid waste management.

5.41 In accordance with GMCO 1.5, Critical Competencies, the duty holder must be satisfied that personnel conducting assurance activities are suitably qualified to do so.
5.42 Further guidance to the applications of Process 3 – Develop assurance plan (regulated), can be accessed via the DSwMS website.62

PROCESS 4 – DEVELOP ASSURANCE MASTER PLAN (REGULATOR)

5.43 This process describes the requirement for the DSwR to plan appropriate assurance activities in accordance with the DSwMS Risk Management and Assurance Framework discussed in Volume 1, Part 1, Chapter 4. This process should be read in conjunction with Process 6 – Provide assurance (Regulator). In accordance with the DSwMS regulatory framework discussed in Volume 1, Part 1, Chapter 3, and the DSwMS Risk Management and Assurance Framework discussed in Volume 1, Part 1, Chapter 4, assurance is to be conducted by the DSwR as a third line of defence activity. The aim of this assurance is to:

a. assist duty holders in understanding hazards and risks to the Seaworthiness Outcome, in order to support decision making in the seaworthiness context
b. support the DSwR and DSwA in the application of appropriate controls with respect to hazards and risks to the Seaworthiness Outcome, and measure the effectiveness of DSwMS to inform reporting requirements as described in Volume 1, Part 1, Chapter 4.

5.44 The Assurance Master Plan, and subsequent assurance activities, contribute to the body of evidence for the DSwA to provide justified confidence in the efficacy of the DSwMS; and may contribute to the body of evidence required by the duty holders to provide justified confidence in the Seaworthiness Outcome as discussed in Volume 1, Part 1, Chapter 1.

5.45 In planning assurance activities, the DSwR will make every effort to be cognisant of other assurance activities being conducted in the same area and will coordinate with other assurance providers where practicable.

5.46 In a resource constrained environment, assurance activities should be targeted based on an assessment of hazards and risks. Inputs to the Assurance Master Plan may include, but are not limited to:

a. mission system compliance strategies, particularly where MOC prescribe assurance activities
b. regulated assurance plans
c. hazard and risk assessment
d. outputs from previous assurance activities such as:
 (1) thematic or strategic trend analysis
 (2) recognised non compliance
 (3) risk or issue in one area which may be applicable in another
e. periodic requirement
f. spot check

62 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
g. a new regulation or requirement.

5.47 Therefore, the key output of this process is a risk based, prioritised and fully resourced plan for the deployment of DSwR assurance resources.

5.48 To ensure that assurance activities conducted in the third line of defence are done so by suitably qualified and experienced people, the DSwR may identify appropriate subject matter experts within the regulated to participate in assurance activities prescribed in the DSwMS Assurance Master Plan. The DSwR may also request that the regulated identify appropriate individuals to participate in activities prescribed in the DSwMS Assurance Master Plan. Requests for assistance will be made through the appropriate chain-of-command arrangements within the specified group or service. Where requests for assistance have been made by the DSwR, supervisors are to make every effort to allow identified personnel to participate as requested.

5.49 To avoid potential conflicts of interest, in all cases where personnel from the regulated are requested to conduct assurance activities on behalf of the DSwR, the DSwR will ensure that suitable separation exists between the person and the assurance activity they are conducting. Examples where insufficient separation exists may include:

a. where the identified person conducted similar assurance at the first or second line of defence

b. where assurance is being conducted against the efficacy of a MOC, the SQEP who proposed the MOC should not be involved in the assurance over that MOC at the third line of defence.

5.50 Further guidance to the applications of Process 4 – Develop Assurance Master Plan (Regulator), can be accessed via the DSwMS website.

PROCESS 5 – PROVIDE ASSURANCE (REGULATED)

5.51 This process describes the requirement for the regulated to provide appropriate assurance activities in accordance with the assurance plan (regulated). This process should be read in conjunction with Process 3 – Develop assurance plan (regulated).

5.52 The duty holder will plan and conduct assurance as required, based on hazards and risks to the Seaworthiness Outcome. As such, this process is not intended to be prescriptive, but rather provide guidance to duty holders around good practice with respect to assurance.

5.53 The duty holder is required to conduct first and second line of defence assurance activities mindful of the requirements of Volume 1, Part 1, Chapter 4.

5.54 On conduct of assurance activities the duty holder is to inform the DSwR in circumstances where:

a. They are unable to comply with the endorsed compliance strategy for the following reasons:

63 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx

UNCLASSIFIED
(1) the AMOC is deemed, through assurance, to be unsuitable to meet the intent of the regulation
(2) a regulation has been found to be not suitable or applicable and may require modification or removal.
b. A hazard or risk has been identified where a duty holder recognises there may be a need for a new regulation, examples include:
 (1) new or novel technologies
 (2) new or novel modes of conducting the business or undertaking.
c. They have identified systemic risks to the Seaworthiness Outcome. They are also to inform the DSwR regarding the actions they have taken, or are taking to manage and remediate those risks.
d. A risk to the Seaworthiness Outcome exists that requires a third line of defence response, and/or assistance of the DSwR is required to resolve associated issues (via escalation in accordance with Process 9). Examples include:
 (1) the inability of entities on which a Capability Manager depends, to satisfy the Capability Manager’s needs in meeting the Seaworthiness Outcome
 (2) inability to comply with a new DSwMS regulation or requirement.

5.55 Where the duty holder detects they did not comply where it was reasonable to do so, they shall take such action as to remediate the non compliance as soon as is reasonably practicable. In such cases of non compliance, the duty holder will report to the DSwR where Defence enterprise materiality criteria or trigger conditions set through the DSwMS are reached or exceeded.

5.56 On receiving such information as detailed in paragraph 5.54, the DSwR will consider:
 a. the suitability of actions being taken by the duty holder
 b. the ability of the duty holder to take effective action
 c. requirements on the DSwR arising from Process 9 – Issue resolution and escalation.

5.57 Further guidance to the applications of Process 5 – Provide assurance (regulated) including materiality criteria and trigger conditions, can be accessed via the DSwMS website.64

PROCESS 6 – PROVIDE ASSURANCE (REGULATOR)

5.58 This process describes the requirement for the DSwR to provide assurance activities in accordance with the Assurance Master Plan. This process should be read in conjunction with Process 4 – Develop Assurance Master Plan (Regulator).

64 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
5.59 The DSwhR is required to conduct third line of defence assurance activities mindful of the requirements of Volume 1, Part 1, Chapter 4.

5.60 On conduct of assurance activities the DSwhR is to inform the duty holder in circumstances where:

a. A non-compliance against an AMOC within the compliance strategy has been identified.

b. A hazard or risk has been identified where the DSwhR recognises a need for a new regulation. Examples include:
 (1) new or novel technologies
 (2) new or novel modes of conducting the business or undertaking.

c. A risk to the Seaworthiness Outcome has been identified. In accordance with Volume 1, Part 1, Chapter 4, risks may be characterised as:
 (1) localised (contained) events and associated risks
 (2) major events and associated risks
 (3) chronic conditions and risks.

5.61 Periodic reporting requirements of the DSwhR are articulated at Volume 1, Part 1, Chapter 4, and will include assessments of the health of the DSwhMS.

5.62 The DSwhR may authorise an independent party to conduct assurance on their behalf.

5.63 For contestability and assessment of DSwhMS efficacy, the DSwhA may determine the requirement for an independent party to conduct assurance activities over both the DSwhR and the regulated.

5.64 Further guidance to the applications of Process 6 – Provide assurance (Regulator), can be accessed via the DSwhMS website.65

PROCESS 7 – PROVIDE EDUCATION

5.65 This process describes the requirement for the DSwhR to understand the educational requirements with respect to DSwhMS and to engage with authorised bodies to ensure education with respect to DSwhMS is provided to the appropriate people, at the appropriate time, to the appropriate level.

5.66 The scope of this process includes education required by the regulated to enable seaworthiness management, and that required by the ODSwhR to facilitate the DSwhMS.

5.67 Education is a cornerstone of successful seaworthiness management. As groups and services maintain independent training and education systems, the DSwhR shall establish and maintain appropriate mechanisms with all groups and services to ensure that the requirements for education are understood, developed and implemented appropriately.

65 http://drnet/Seaworthiness/Pages/DSwhMS-Guidance.aspx
5.68 It is expected that groups and services will, through consultation with DSwR, proactively develop education requirements sufficient to enable seaworthiness management as described in this manual. The DSwR will determine and maintain all education requirements for the ODSwR.

5.69 The education requirements for this process fall loosely into four categories:
 a. education developed by the DSwR and provided by the DSwR
 b. education developed by the DSwR and provided externally
 c. education developed externally and provided by the DSwR
 d. education developed externally and provided externally.

5.70 The DSwR may conduct assurance activities with respect to education, in accordance with Process 4 – Develop Assurance Master Plan (Regulator) and Process 6 – Provide assurance (Regulator).

5.71 Further guidance to the application of Process 7 – Provide education, can be accessed via the DSwMS website.66

PROCESS 8 – PROVIDE ADVICE

5.72 This process describes the requirement for the DSwR to provide advice with respect to seaworthiness management.

5.73 In general, ‘information’ addresses facts or interpretations with respect to ‘what’ is required for seaworthiness management in accordance with this manual. ‘Advice’ applies the specific regulations, compliance requirements or assurance requirements to a particular set of circumstances; and often describes ‘how’ a given issue can be resolved. Therefore the DSwR will manage requests for advice differently to requests for information, in particular with respect to documentation requirements. In most circumstances, requests for information will be managed through Process 7 – Provide education.

5.74 Both advice and information can be sought from DSwR via any of the means articulated at the DSwMS website.67

5.75 Advice provided by the DSwR may be sought externally where the subject matter expertise does not reside within the ODSwR, or where such advice requires a suitably qualified and authorised legal practitioner. In all circumstances, the DSwR will identify the appropriate suitably qualified person or persons to provide the advice.

5.76 The DSwR will capture all requests for advice and assess the advice requirements against the following:
 a. the issue
 b. the context
 c. level of complexity

66 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
67 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
d. the authority(ies)/advice provider(s)
e. time frames
f. advice implications (legal interpretation, traceability, risk mitigation).

5.77 The DSwR will provide the advice through the nominated, authorised person. Advice may be delivered via the most appropriate means, however, all advice authorised by the DSwR will be documented and retained by the ODSwR.

5.78 Advice areas may include, but are not limited to:

a. regulation
b. compliance, including PMOC
c. assurance
d. seaworthiness risk management
e. legislation, as it applies in the seaworthiness context; where such advice requires interpretation of the law, the DSwR will ensure that the person or persons providing the advice are suitably qualified and authorised legal practitioners
f. other countries’ legislation as it applies to operation of Australian maritime mission systems in the seaworthiness context.

5.79 Further guidance to the applications of Process 8 – Provide advice, can be accessed via the DSwMS website.68

PROCESS 9 – ISSUE RESOLUTION AND ESCALATION

5.80 This process describes the role of the DSwR and the regulated in issue resolution and escalation.

5.81 The requirement for issue resolution and/or escalation may be instigated by the DSwR or the regulated. Such requirements may include, but are not limited to:

a. An inability of the duty holder to comply with a regulation.
b. An inability to agree on a MOC with a regulation.
c. A request for assistance by a duty holder. Such requests may occur where:
 (1) the owner of the risk or hazard control is outside of the authority of the duty holder
 (2) responsibilities and accountabilities relating to shared duties are unclear or cannot be resolved
 (3) conflicts in co-regulation require resolution at the third line of defence.
d. A breach of compliance with regulations. In this circumstance the DSwR will issue a seaworthiness corrective action (SCA) to the duty holder in accordance with the materiality criteria available via the DSwMS website.69

68 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
e. A breach of compliance with legal obligations. In this circumstance the DSwR will:

(1) advise the DSwA
(2) report to external regulatory authorities in accordance with legislated mandatory reporting requirements and consistent with the roles, responsibilities and accountability of the DSwR
(3) issue a SCA to the duty holder, or take other action in accordance with Defence Enterprise risk management (ERM) policy and the materiality criteria available via the DSwMS website.

5.82 Enforcement under DSwMS is shared between internal authorities (summary authorities, service tribunals, accountable officials and the DSwR etc) and external regulators, which all have parallel enforcement powers that work together to ensure compliance to DSwMS. In general, enforcement mechanisms are set out in applicable legislative instruments, however the DSwR reserves the right to take other such action as deemed appropriate in order to manage hazards and risks to the Seaworthiness Outcome. Such action may include, but is not limited to:

a. escalating an issue, which results in the accountable official halting a project at a gate review until specified conditions have been satisfied
b. advising an accountable official to, for example, defer sea trials until specified conditions have been satisfied
c. issuing a SCA, which recommends the accountable official restrict the operation of a maritime mission system, or elements of its support system, until specified conditions have been satisfied.

5.83 Consistent with the principle that the DSwR is not a permissioning authority, the exercise of enforcement powers will need to be judicious and the exception under DSwMS.

5.84 The DSwR may review the effectiveness of the issue resolution and escalation process in accordance with Process 10 – Demonstrate value and continuously improve.

5.85 Further guidance to the applications of Process 9 – Issue resolution and escalation, can be accessed via the DSwMS website.

PROCESS 10 – DEMONSTRATE VALUE AND CONTINUOUSLY IMPROVE

5.86 This process describes the requirement for the DSwR to assess appropriate measures of effectiveness for DSwMS, collect and analyse data with respect to the
measures, and make improvements to the system in the context of achieving the Seaworthiness Outcome. The continual monitoring of the system with appropriate reporting mechanisms will allow the DSwR to demonstrate the value that DSwMS is contributing to Defence in the seaworthiness context. Value in the seaworthiness context is measured against demonstrations of:

a. traceability to the Seaworthiness Outcome
b. due diligence, including legal compliance
c. effectiveness and efficiency.

5.87 One of the historical issues that the DSwMS seeks to address is the gradual erosion of capability over time. It is important that Defence protects the DSwMS itself from this threat by reminding itself of the value created by the system.

5.88 The DSwR will define and baseline appropriate measures of effectiveness for the DSwMS. Measures of effectiveness will naturally change over time as more information becomes available through analysis, and as the system matures. Current measures of effectiveness can be accessed via the DSwMS website.73

5.89 Data may be collected against measures through a number of means, including:

a. assurance activities (DSwR)
b. assurance activities (regulated)
c. compliance strategies.

5.90 Once data is collected against the measures, the DSwR will conduct analysis over the data which will be used for:

a. improvements
b. seaworthiness corrective actions (SCAs)
c. hazard and risk assessments
d. health assessments
e. reports to the DSwA
f. reports to the regulated.

5.91 Such analysis may include but is not limited to:

a. culture surveys
b. trend analysis
c. event analysis
d. hazard/risk analysis.

5.92 This process aims to proactively identify latent hazardous conditions, other systemic or strategic risks and apply suitable controls via the appropriate mechanism. Such mechanisms could include:

73 http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
a. a new regulation
b. corrective action requirement for the regulated
c. education
d. advocacy.

5.93 Further guidance to the applications of Process 10 – Demonstrate value and continuously improve, can be accessed via the DSwMS website.⁷⁴

THE SEAWORTHINESS CASE

5.94 The DSwMS Operating Model described by the above processes represents a closed-loop management system, which enacts regulation and assurance and embodies due diligence principles.

5.95 All three components of the DSwMS have been built around the requirement to demonstrate the Seaworthiness Outcome through a claim, answered with an argument and evidence. In the context of the DSwMS Operating Model:

a. the claim of a ‘seaworthy maritime mission system’ is made and argued through the compliance strategy developed through Process 2 – Develop and Maintain Compliance Strategy

b. the evidence is provided through the assurance activities conducted in Process 3 – Develop assurance plan (regulated) and Process 5 – Provide assurance (regulated).

5.96 Thus, the seaworthiness case for a given maritime mission system is comprised of the compliance strategy and the evidence provided through assurance.

⁷⁴ http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
VOLUME 2: DEFENCE SEAＷORTHINESS MANAGEMENT
SYSTEM MANUAL GOVERNANCE AND MANAGEMENT
COMPLIANCE OBLIGATIONS

Contents

Part 0: GMCO Goals
Part 1 Goal 1 – Enable Seaworthiness Management
Part 2: Goal 2 – Maritime Mission System and Enabling Support System
Align with Capability Manager’s Authorised Operating and Support Intent
Part 3: Goal 3 – Systems are Operated as Intended
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
PART 0: GMCO GOALS
CONTENTS

Chapter 1 1–1
Goals for governance and management 1–1
 Governance and management compliance obligation goals 1–1
 Outcome 1–3
CHAPTER 1

GOALS FOR GOVERNANCE AND MANAGEMENT

GOVERNANCE AND MANAGEMENT COMPLIANCE OBLIGATION GOALS

1.1 The Defence Enterprise is engaged in a complex undertaking requiring clear outcomes, accountabilities, authorities, direction, coordination and collective action. Enterprises of similar complexity typically implement highly structured governance and management systems and arrangements to:

 a. Enable and maintain the enterprise through:
 (1) a clear articulation of accountabilities, roles and responsibilities
 (2) provision of resources
 (3) provision of guidance and direction (plans, policies, orders, instructions and publications)
 (4) performance monitoring across the enterprise to provide feedback that enables adjustment, correction and control of risk.

 b. Use the resources and guidance provided above to perform the functions and activities necessary to deliver the enterprise aims and objectives. In the Defence context this includes acquiring and integrating multiple inputs in a coordinated and collective manner to realise, operate, sustain and eventually dispose of mission systems.

1.2 The Defence Seaworthiness Management System (DSwMS) Governance and Management Compliance Obligations (GMCO) codify governance and management good practice as it relates to achieving the Seaworthiness Outcome. This is done at a functional level that guides and enables the development and implementation of policies appropriate to the Capability Manager’s roles, responsibilities and accountabilities in the One Defence\(^1\) enterprise context. The DSwMs GMCOs sum to achieve the governance and management goals described below. They are consistent with the notion that an enterprise must first be ‘enabled’ and must then use the resources and guidance provided to undertake activities which will deliver against the enterprise aims and objectives. The following is a description of the three GMCO goals. The GMCOs described in Parts 1 to 3 of this volume collectively sum to achieve these goals.

Goal 1: The Defence Maritime Enterprise enables achievement of the Seaworthiness Outcome through suitable governance and management activities and arrangements.

1.3 Good governance and management requires the following:

 a. an understanding of the enterprise aims, objectives and constraints (including legal constraints)

\(^{1}\) http://drnet.defence.gov.au/AssociateSecretary/first-principles/Pages/default.aspx
b. an understanding of the risks:
 (1) to achieving the aims and objectives above
 (2) associated through achievement of those aims and objectives

c. an understanding and application of required resources to deliver the aims and objectives, and to manage the associated risks

d. provision for incident and accident response in a manner consistent with the risks and consequences associated with the enterprise

e. monitoring and provision of information to authorities in a manner aligned with the roles, responsibilities and accountabilities of those authorities.

1.4 The GMCOs under Goal 1, and included at Part 1 of this volume, provide a systematic set of requirements aimed at achieving this goal.

Goal 2: A maritime mission system and its enabling support system align with the Capability Manager’s operating and support intent.

1.5 By defining the operating and support intent (OSI) based on the full range of operational effects required during the in-service phase of the Capability Life Cycle, the Capability Manager has articulated what needs to be achieved by the ideal solution (in effect, the ideal user requirements).

1.6 All mission systems are designed and realised in accordance with a user and support intent in mind. However where the realised system does not align with the user intent, systems may not function and perform as required or expected, and they may also expose personnel and the environment to hazards and risks that have not been considered or controlled.

1.7 The GMCOs under Goal 2, and included at Part 2 of this volume, provide a systematic set of requirements aimed at achieving and maintaining best possible alignment of user intent with realised systems. They also address the management of hazards and risks associated with that alignment.

Goal 3: A maritime mission system and its enabling support system are operated in accordance with the Capability Manager’s authorised operating and support intent.

1.8 The likelihood of achieving the Seaworthiness Outcome is maximised where mission systems are operated and supported as intended. Where mission systems are operated outside of the Capability Manager’s OSI, or where the support requirements are not brought to bear, then those mission systems may not function and perform as required or expected. In addition, they may also expose personnel and the environment to hazards and risks that have not been considered or controlled.

1.9 The GMCOs under Goal 3, and included at Part 3 of this volume, provide a systematic set of requirements aimed at achieving and maintaining best possible alignment of the Capability Manager’s OSI with the actual operation and support of the realised systems. They also address the management of hazards and risks associated with that alignment.
1.10 All activities and arrangements necessary to effectively and efficiently govern and manage the Defence Maritime Enterprise are aligned with achievement of the Seaworthiness Outcome and to good practice. Compliance with these goals in conjunction with those associated with the Activity and Condition Based Compliance Obligations collectively aim to ensure achievement of the Seaworthiness Outcome.

2 Note the Goals and GMCOs are traceable to the Seaworthiness Outcome through the Seaworthiness Argument (see Volume 1, Chapter 1)
PART 1: GOAL 1 – ENABLE SEAWORTHINESS MANAGEMENT
CONTENTS

Chapter 1 1–1
Governance and Management Compliance Obligation 1–1
1.1 - governance and leadership 1–1
 Functional Objective 1–1
 Outcome 1–1
 Rationale 1–1
 Requirements of Functional Objective 1.1 1–2
 Policy 1–2
 Implementation 1–3
 Performance Requirements 1–3
 Guidance 1–4

Chapter 2 2–1
Governance and Management Compliance Obligation 1.2 - consultation, cooperation and coordination 2–1
 Functional Objective 2–1
 Outcome 2–1
 Rationale 2–1
 Requirements of Functional Objective 1.2 2–1
 Policy 2–1
 Implementation 2–2
 Performance Requirements 2–2
 Guidance 2–2

Chapter 3 2–1
Governance and Management Compliance Obligation 1.3 - seaworthiness risk management 3–1
 Functional Objective 3–1
 Outcome 3–1
 Rationale 3–1
 Requirements of Functional Objective 1.3 3–2
 Policy 3–2
 Implementation 3–2
 Performance Requirements 3–3
 Guidance 3–4

Chapter 4 4–1
Governance and Management Compliance Obligation 1.4 - Critical Functions 4–1
 Functional Objective 4–1
 Outcome 4–1
 Rationale 4–1
 Requirements of Functional Objective 1.4 4–2
 Policy 4–2
 Implementation 4–2
 Performance Requirements 4–2
 Guidance 4–3
Chapter 5

Governance and Management Compliance Obligation 1.5 - Critical Competencies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Objective</td>
<td>5–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>5–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>5–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 1.5</td>
<td>5–1</td>
</tr>
<tr>
<td>Policy</td>
<td>5–1</td>
</tr>
<tr>
<td>Implementation</td>
<td>5–2</td>
</tr>
<tr>
<td>Performance Requirements</td>
<td>5–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>5–2</td>
</tr>
</tbody>
</table>

Chapter 6

Governance and Management Compliance Obligation 1.6 - Incident Response

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Objective</td>
<td>6–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>6–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>6–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 1.6</td>
<td>6–2</td>
</tr>
<tr>
<td>Policy</td>
<td>6–2</td>
</tr>
<tr>
<td>Implementation</td>
<td>6–2</td>
</tr>
<tr>
<td>Performance Requirements</td>
<td>6–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>6–5</td>
</tr>
</tbody>
</table>

Chapter 7

Governance and Management Compliance Obligation 1.7 - Performance Management & Continuous Improvement

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Objective</td>
<td>7–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>7–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>7–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 1.7</td>
<td>7–2</td>
</tr>
<tr>
<td>Policy</td>
<td>7–2</td>
</tr>
<tr>
<td>Implementation</td>
<td>7–2</td>
</tr>
<tr>
<td>Performance requirements</td>
<td>7–3</td>
</tr>
<tr>
<td>Guidance</td>
<td>7–4</td>
</tr>
</tbody>
</table>
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 1

GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.1 - GOVERNANCE AND LEADERSHIP

FUNCTIONAL OBJECTIVE

1.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.1 is defined as:

Effective leadership and governance functions and structures to enable seaworthiness management are established and maintained.

OUTCOME

1.2 The Capability Manager has clearly documented and authorised mechanisms that specify how and by whom relevant Defence Seaworthiness Management System (DSwMS) compliance obligations will be satisfied, and through which they articulate and manage relationships and accountabilities in the DSwMS context.

1.3 Other duty holders understand their obligations and accountabilities to the Capability Manager in relation to the management of hazards and risks to the Seaworthiness Outcome.

RATIONALE

1.4 Defence is a complex organisation with multiple business units that deliver business outputs, which should ultimately sum to achieve the enterprise aim. In the seaworthiness context, the enterprise aim is defined as the Seaworthiness Outcome – maximise the likelihood of achieving the specified operational effect for the defined tasking, where hazards and risks to personnel, the public and the environment have been eliminated/minimised so far as is reasonably practicable (SFARP).

1.5 The relationships between the various Defence business units are driven by the requirement to achieve this aim. The Capability Manager must plan, manage and deliver capability, but this requirement is supported by enablers outside of the Capability Manager’s chain of command. Thus, in recognition that many business units contribute to the Seaworthiness Outcome, the Capability Manager is specifically authorised and accountable for integrating the various business unit contributions to deliver the outcome.

1.6 Each business unit must manage risks to the Seaworthiness Outcome in the context of what they provide to the enterprise. The risk to achievement of the outcome is then managed around a central tenet, that being that primacy of the Capability Manager. Duty holders in each business unit are accountable to the Capability Manager for seaworthiness management.

1.7 The Capability Manager must understand where specific contributions by various business units introduce risk to achievement of the outcome across the Capability Life Cycle. To do this, the Capability Manager must establish a suitable framework of accountabilities for the management of hazards and risks to the Seaworthiness Outcome and ensure that those accountabilities are understood and acknowledged by all contributing business units.
1.8 The Defence Seaworthiness Regulator (DSwR) aims to control hazards and risks to the Seaworthiness Outcome and interpret relevant legislation through the regulations. The regulations provide a framework to aid the duty holder in assessing risks to the Seaworthiness Outcome, but the accountability for managing the risks lies with the duty holder. Thus there is an expectation and a requirement that duty holders have an understanding of their duties in the legal context. The seaworthiness regulations have been designed to facilitate due diligence, but duty holders must themselves demonstrate mindfulness in their application. The Regulator will assist to provide guidance accordingly.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.1

POLICY

1.9 The Capability Manager must enact policies that:

a. Articulate the Capability Manager’s authorities and accountabilities in relation to achievement of the Seaworthiness Outcome in the One-Defence context.

b. Specify the Capability Manager's requirements and accountabilities of other business units for the management of hazards and risks to the Seaworthiness Outcome.

c. Ensure that accountabilities for execution of legal duties as they relate to subparagraphs (a) and (b) above and achievement of the Seaworthiness Outcome, are clear and unambiguous. These duties must include, but are not limited to:

 (2) primary and further duties as articulated in other legislation relevant to the Seaworthiness Outcome.

d. Embody proactive due diligence. The due diligence duties in this context include:

 (1) **Know.** Acquire and keep up-to-date knowledge of legislation relevant to the seaworthiness context.

1 http://dnet.defence.gov.au/AssociateSecretary/first-principles/Pages/default.aspx

2 The Defence Seaworthiness Regulator aims to control hazards and risks to the Seaworthiness Outcome and interpret relevant legislation through the regulations. The regulations provide a framework to aid the duty holder in assessing risks to the Seaworthiness Outcome, but the accountability for managing the risks lies with the duty holder. See paragraph 1.8 for further guidance.

4 The Defence Seaworthiness Regulator aims to control hazards and risks to the Seaworthiness Outcome and interpret relevant legislation through the regulations. The regulations provide a framework to aid the duty holder in assessing risks to the Seaworthiness Outcome, but the accountability for managing the risks lies with the duty holder. See paragraph 1.8 for further guidance.
(2) **Understand.** Gain an understanding of the nature of Defence outcomes and what is necessary to deliver those outcomes in context of the achievement of the Seaworthiness Outcome (maximise likelihood of a maritime mission system achieving the specified operational effect for a defined tasking whilst eliminating or minimising SFARP the hazards/risks to personnel, the public, and the environment). In this context, understand the hazards and risks to personnel, the public and the environment.

(3) **Resource.** Provide and use appropriate resources to eliminate or minimise SFARP hazards and risks to the achievement of the Seaworthiness Outcome.

(4) **Monitor.** Monitor information on incidents, hazards and risks and respond in a timely manner to that information.

(5) **Comply.** Comply with relevant legislative requirements.\(^5\)

(6) **Verify.** Verify the use of resources and processes in items 1.9d(3) through 1.9d(5) are applied as intended and are achieving the required outcome.

IMPLEMENTATION

1.10 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented

b. implemented through orders, instructions and procedures as necessary

c. resourced appropriately

d. monitored for adherence and achievement of the policy intent

e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

1.11 All duty holders associated with the achievement of the Seaworthiness Outcome are able to articulate:

a. their accountabilities and authorities

b. how those accountabilities and authorities relate to and integrate with those of other duty holders to deliver the Seaworthiness Outcome.

1.12 The Capability Manager must:

a. document their governance and leadership arrangements in context of the Defence Enterprise that are necessary to achieve the Seaworthiness Outcome

\(^5\) The Defence Seaworthiness Regulator aims to control hazards and risks to the Seaworthiness Outcome and interpret relevant legislation through the regulations. The regulations provide a framework to aid the duty holder in assessing risks to the Seaworthiness Outcome, but the accountability for managing the risks lies with the duty holder. See paragraph 1.8 for further guidance.
b. demonstrate that such documentation, once developed, is maintained, validated and made readily available to business units that contribute to achievement of the Seaworthiness Outcome

c. demonstrate the efficacy of those arrangements

d. demonstrate that the governance arrangements for duty holders in the second line of defence are aligned with requirements for the achievement of the Seaworthiness Outcome.

GUIDANCE

1.13 Further guidance for this Functional Objective is available at the DSwMS website.

CHAPTER 2
GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.2 - CONSULTATION, COOPERATION AND COORDINATION

FUNCTIONAL OBJECTIVE
2.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.2 is defined as:

Consultation, cooperation and coordination mechanisms to enable seaworthiness management are established and maintained

OUTCOME
2.2 All personnel involved in the management of seaworthiness understand their own contribution and how that needs to fit with the contributions of others to achieve the Seaworthiness Outcome. They work together to maintain the level of integration and responsiveness necessary to achieve the Seaworthiness Outcome in a dynamic environment.

RATIONALE
2.3 In accordance with Functional Objective 1.1, the Capability Manager has established a framework of accountabilities for the management of hazards and risks to the Seaworthiness Outcome.
2.4 In a complex enterprise, the execution of these accountabilities requires collaboration across all contributing business units to ensure that the enterprise aim can be achieved. Furthermore, the dynamic nature of the Defence Enterprise requires a level of responsiveness that can only be achieved through effective collaboration.
2.5 Without effective collaboration, there is a danger that accountabilities and requirements can be interpreted in isolation (eg through the lens of a particular function or business unit). Whilst this can optimise the output of an individual function or business unit, it can introduce risk to the Seaworthiness Outcome, reduce overall efficiency, and result in unnecessary rework.
2.6 Therefore consultation, cooperation and coordination are necessary to achieve the Seaworthiness Outcome.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.2

POLICY
2.7 The Capability Manager must enact policies that specify mechanisms that enable:

a. Horizontal consultation, cooperation and coordination between duty holders who may have shared or overlapping duties across and/or external to Defence in relation to seaworthiness management and hazards and risks to the achievement of the Seaworthiness Outcome.
b. Consultation, cooperation and coordination specifically relating to the development and maintenance of the core suite of unifying artefacts as they relate to specific maritime mission systems and their enabling support systems. The development and use of the unifying artefacts is supported by organisational agreements, contracts, and other arrangements such as terms of reference for integrated project teams.

c. Consultation, cooperation and coordination specifically relating to dispute resolution or escalation requirements in the seaworthiness context.

2.8 All duty holders must enact policies that specify mechanisms that enable vertical consultation, coordination and cooperation throughout their business unit hierarchy or chain of command in relation to seaworthiness management and hazards and risks to the achievement of the Seaworthiness Outcome.

IMPLEMENTATION

2.9 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented
b. implemented through orders, instructions and procedures as necessary
c. resourced appropriately
d. monitored for adherence and achievement of the policy intent
e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

2.10 The Capability Manager must:

a. demonstrate that all necessary contributors to the Seaworthiness Outcome have been identified, including all relevant FIC elements and business units both internal and external to Defence
b. demonstrate that mechanisms are in place to establish and maintain consultation, cooperation and coordination with those identified.

2.11 Duty holders must demonstrate that their personnel, associated with the achievement of the Seaworthiness Outcome, are able to articulate their own contribution and how that needs to fit with the contributions of others to achieve the Seaworthiness Outcome.

GUIDANCE

2.12 Further guidance for this Functional Objective is available at the DSwMS website.\(^7\)

\(^7\) http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx
CHAPTER 3
GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.3 - SEAWORTHINESS RISK MANAGEMENT

FUNCTIONAL OBJECTIVE

3.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.3 is defined as:

Management systems to control risks to the Seaworthiness Outcome are established and maintained

OUTCOME

3.2 The risks to the Seaworthiness Outcome for a mission system and its enabling support system are sufficiently understood, and control mechanisms developed and managed, such that these risks are controlled.

RATIONALE

3.3 This Functional Objective establishes and maintains the capability to manage risk information generated through the application of compliance obligations in accordance with GMCO Goals 2 and 3. Unless risk information is acted on in a timely and appropriate manner, the Seaworthiness Outcome cannot be assured.

3.4 Hazards and risks to the Seaworthiness Outcome manifest at a mission system and enabling system level. The governance and management of those hazards and risks are characterised and aligned with duty holders’ roles through the responsibilities and accountabilities described in Volume 1, Part 1, Chapter 4.

3.5 This Functional Objective requires an approach to risk management that is consistent with the needs of those duty holders and which enables them to act appropriately on those hazards and risks to the Seaworthiness Outcome specific to, and collectively across mission systems and enabling support systems, throughout the Capability Life Cycle.

3.6 The types of seaworthiness risk that require management are those where the hazards and risks are credible and:

a. Are characterised as localised in nature that may, irrespective of magnitude, result in localised harm (injury or fatality to one or several persons, or localised harm to the environment).

b. Are characterised as major in nature that may, irrespective of likelihood, result in catastrophic consequences. These are typically managed through critical risk controls that prevent loss of control, regain control or mitigate loss of control, as determined through the Activity and Condition Based Compliance Obligation (ACCO).

c. Are characterised as latent, chronic and systemic that can reduce control effectiveness and may be lead indicators to loss of control.

d. Are associated with any excursions beyond the operating and support intent (OSI) where control effectiveness may be reduced (and risk exposure may arise in any of (a), (b) and (c) above).
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.3

POLICY

3.7 The Capability Manager must enact policies that specify:

a. procedures for controlling seaworthiness risk including the identification, assessment and management of:
 (1) hazards and risks characterised as local in nature
 (2) hazards and risks characterised as major
 (3) hazards and risks characterised as latent, chronic and systemic
 (4) hazards and risks associated with any excursions beyond the OSI in accordance with GMCO 3.3

b. the establishment and maintenance of risk management capability for each mission system and its enabling support system to:
 (1) monitor and analyse risk control information
 (2) prioritise and allocate resources to risk control activities
 (3) communicate and educate regarding risk control
 (4) resolve issues regarding risk control, and escalate where necessary
 (5) report status, issues, breaches and incidents

8 Emergency response to accidents and incidents is covered in GMCO 1.6

c. mechanisms and requirements for the transition of seaworthiness risk management throughout the Capability Life Cycle

d. mechanisms by which duty holders will be held accountable for the management of seaworthiness risk

e. a risk management methodology that can be applied in circumstances not covered by the established risk management systems and orders, instructions and publications (OIP).

IMPLEMENTATION

3.8 The Capability Manager must:

a. identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:
 (1) defined and documented
 (2) implemented through OIP as necessary
 (3) resourced appropriately
 (4) monitored for adherence and achievement of the policy intent
 (5) adjusted as necessary to ensure achievement of the policy intent
b. provide appropriate means of communicating risk to seaworthiness management duty holders.

PERFORMANCE REQUIREMENTS

3.9 The Capability Manager must demonstrate that the implemented system:

a. with specific reference to localised hazard and risks:
 (1) provides, where the hazards and risks are typically commonplace and well understood, systems and processes of control consistent with recognised codes of practice
 (2) performs, where hazards and risks are not well understood or where it is specifically required by legislation, risk assessment and management in accordance with an applicable risk management standard

b. with specific reference to major hazards and risks:
 (1) provides, where the hazards and risks are identified through the ACCO development and application process, systems and processes of control consistent with the Means of Compliance, as agreed through the compliance strategy
 (2) performs, where hazards and risk are not sufficiently covered by controls identified through the ACCO development and application process, risk assessment and management in accordance with an applicable risk management standard and then engages with the DSwR to determine the requirement for additional regulation

c. with specific reference to latent, chronic and systemic hazardous conditions that can reduce control effectiveness and may be lead indicators to loss of control; monitor and manage the adequacy of these conditions including:
 (1) seaworthiness culture – mindfulness, collaboration, accountability and transparency
 (2) the skills, qualifications, training and experience of personnel to perform their assigned role/task
 (3) the fitness for purpose and maintenance of organisations, structures and arrangements
 (4) the fitness for purpose and maintenance of systems of work for the management or operation of a maritime mission system and/or its enabling support system
 (5) adherence to the systems of work identified above
 (6) that personnel are sufficiently trained or experienced to respond to emergency or unplanned scenarios
 (7) that maintenance requirements are identified for the maritime mission system and/or its enabling support system
 (8) that identified maintenance requirements are implemented by personnel
 (9) that deficiencies in a maritime mission system and/or its enabling support system in context of its OSI are identified or rectified by personnel
that maintainers are skilled, trained, qualified, experienced or competent to perform maintenance procedures

d. with specific reference to the management of risks associated with any excursions beyond the OSI, ensure:

(1) that a defined risk management methodology is applied to manage seaworthiness risks during an excursion

(2) that any short term or long term impairment to system functionality or performance caused by an excursion is rectified

(3) compliance with GMCO 3.3.

GUIDANCE

3.10 Further guidance for this Functional Objective is available at the DSwMS website.⁹

CHAPTER 4

GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.4 – CRITICAL FUNCTIONS

FUNCTIONAL OBJECTIVE

4.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.4 is defined as:

Functions necessary for achievement of the Seaworthiness outcome are identified, established and maintained

OUTCOME

4.2 The Defence Enterprise builds and maintains the functional capabilities (including the required resources) to execute the processes necessary to achieve the Seaworthiness Outcome. The application of these functional capabilities is integrated by the Capability Manager through the processes and GMCOs 1.1 and 1.2.

RATIONALE

4.3 The regulated community delivers the Seaworthiness Outcome through a series of processes, which comprise activities performed by people. The execution of a process requires specific functional capabilities. Functional capabilities can include administration, engineering, training, operating etc, that are defined around the need for dedicated resource or specific domain expertise.

4.4 Therefore, functions by themselves do not deliver outcomes but need to be coordinated through a process that ultimately delivers the outcome. Thus it is the process that crosses organisational and functional boundaries.

4.5 Functions also need to be defined in terms of specific capabilities and therefore do not necessarily correspond to business unit structures.

4.6 Duty holders must understand the functional requirements of the processes that deliver the Seaworthiness Outcome, and ensure that the requisite functional capabilities are in place (including the required resources). These processes must include those that:

a. relate to the GMCOs

b. are articulated through the DSwMS Operating Model.

4.7 Therefore the intent of this GMCO is to ensure that the Defence Enterprise builds and maintains the functional capabilities to execute the seaworthiness processes required to achieve the Seaworthiness Outcome.

10 Goal 1 addresses processes necessary for overall governance and management for the Seaworthiness Outcome; Goals 2 and 3 address processes specific to maritime mission systems and their enabling support systems throughout the CLC.
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.4

POLICY

4.8 The Capability Manager must enact policies that:

a. Identify, establish and maintain the functions necessary to achieve the Seaworthiness Outcome. These functions must include, but are not limited to, those specifically required:

(1) for the development and maintenance of the core suite of unifying artefacts as they relate to specific maritime mission systems and their enabling support systems

(2) to satisfy the performance requirements under all compliance obligations

(3) to enact the DSwMS Operating Model.

b. Identify the business units internal or external to Defence that are accountable to deliver those functions.

c. Ensure that those accountabilities are supported by organisational agreements, contracts, and other arrangements such as terms of reference for integrated project teams.

d. Ensure that functions are coordinated through appropriate processes to achieve the Seaworthiness Outcome in accordance with GMCOs 1.1 and 1.2.

IMPLEMENTATION

4.9 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented

b. implemented through orders, instructions and procedures as necessary

c. resourced appropriately

d. monitored for adherence and achievement of the policy intent

e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

4.10 The Capability Manager must demonstrate that:

a. all necessary functions have been identified\(^\text{11}\), including those provided by relevant FIC elements and business units both internal and external to Defence

b. all accountable duty holders with respect to those functions have been identified

\(^{11}\) Analysis may reveal that some necessary functions are not currently provided and may require development, or sourcing from an appropriate provider.
c. systems are in place to establish, maintain and integrate those functional capabilities
d. the functional capabilities have sufficient resources.

4.11 All duty holders associated with the achievement of the Seaworthiness Outcome are able to articulate:

a. their functional contribution to the Seaworthiness Outcome
b. how those contributions integrate with those of other duty holders, through processes necessary to deliver the Seaworthiness Outcome
c. how those functional capabilities will be maintained.

GUIDANCE

4.12 Further guidance for this Functional Objective is available at the DSwMS website. \(^{12}\)

\(^{12}\) http://drnet/Seaworthiness/Pages/DSwMS-Guidance.aspx
CHAPTER 5
GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.5 - CRITICAL COMPETENCIES

FUNCTIONAL OBJECTIVE
5.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.5 is defined as:

Functions necessary for achievement of the Seaworthiness Outcome are performed by suitably qualified and experienced people

OUTCOME
5.2 Suitably Qualified and Experienced Persons perform the functions necessary for the achievement of the Seaworthiness Outcome. This Functional Objective relates to the need for a qualified workforce and therefore complements Functional Objective 1.4.

RATIONALE
5.3 Specific domain expertise is required to execute the functions which are required to achieve the Seaworthiness Outcome (as identified through complying with GMCO 1.4).

5.4 Personnel obtain specific domain expertise through a combination of:
 a. training and education, leading to recognised qualifications
 b. experience in the specific domain
 c. experience in the broader Defence maritime context.

5.5 Once gained, the expertise is kept current through ongoing professional development to maintain currency with evolving methodologies and technologies.

5.6 Suitability requires that the qualifications and experience are current, relevant to the task at hand and at a level that enables the task to be successfully completed to the required standard.

5.7 Therefore the intent of this GMCO is to ensure that the Defence Enterprise maintains suitably qualified and experienced people to perform the functional capabilities, which execute the seaworthiness processes required to achieve the Seaworthiness Outcome.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.5

POLICY
5.8 The Capability Manager must enact policies that:
 a. Identify, establish and maintain the qualifications and experience required to perform the functions necessary to achieve the Seaworthiness Outcome, as identified through compliance with GMCO 1.4.

 b. Maintain suitability of personnel performing those functions. Suitability requires that the personnel have qualifications and experience that are:
(1) current
(2) relevant to the task at hand, and
(3) at a level that enables the task to be successfully completed to the required standard.

c. Provide assurance that these seaworthiness functions are being performed by suitably qualified and experienced people in all business units, internal or external to Defence.

IMPLEMENTATION
5.9 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented
b. implemented through orders, instructions and procedures as necessary
c. resourced appropriately
d. monitored for adherence and achievement of the policy intent
e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS
5.10 The Capability Manager must demonstrate that the:

a. Qualifications and experience required to perform the functions necessary to achieve the Seaworthiness Outcome have been identified and documented.
b. Personnel performing the functions required to achieve the Seaworthiness Outcome have obtained the requisite domain expertise through a combination of:
 (1) training and education, leading to recognised qualifications
 (2) experience in the specific domain
 (3) experience in the broader Defence maritime context.
c. Suitability of personnel performing those functions is maintained. Suitability requires that the personnel have qualifications and experience that are:
 (1) current
 (2) relevant to the task at hand, and
 (3) at a level that enables the task to be successfully completed to the required standard.

GUIDANCE
5.11 Further guidance for this Functional Objective is available at the DSwMS website. ¹³

CHAPTER 6
GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.6 - INCIDENT RESPONSE

FUNCTIONAL OBJECTIVE
6.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.6 is defined as:

Emergency, incident and accident response, management, and investigation functions are established and maintained

OUTCOME
6.2 Potential emergencies, incidents or accidents of a credible nature and which have consequences for the achievement of the Seaworthiness Outcome are identified.

6.3 Harm mitigation controls for potential emergencies, incidents or accidents are prepared in advance.

6.4 Emergencies, incidents or accidents are responded to in an appropriate manner.\(^\text{14}\)

6.5 Learnings from emergencies, incidents or accidents are captured and used to improve management of risks to the Seaworthiness Outcome.

RATIONALE
6.6 Whilst the DSwMS aims to eliminate or minimise so far as is reasonably practicable (SFARP) hazards and risks to the Seaworthiness Outcome, emergencies, incidents and accidents can still occur.

6.7 This Functional Objective addresses the requirement to:
 a. anticipate and prepare for potential, credible and reasonably foreseeable\(^\text{15}\) emergencies, incidents and accidents
 b. respond, investigate and report once an emergency, incident or accident occurs.

\(^{14}\) Requirements under this Functional Objective can vary significantly between mission systems. For example, immediate action in the event of a SUBMISS/SUBSUNK emergency / incident / accident may differ by orders of magnitude from that for a small boat incident/accident (eg a capsized RHIB).

\(^{15}\) Research has demonstrated that "we tend to be over confident about the accuracy or our forecasts and risk assessments and far too narrow in our assessment of the range of outcomes that may occur". See "Management Risk: a New Framework", Harvard Business Review, June 2012, Annette Mikes and Robert S. Kaplan.
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.6

POLICY
6.8 The Capability Manager must enact policies that require duty holders to:
 a. anticipate credible and reasonably foreseeable emergencies, incidents and accidents
 b. make preparations to:
 (1) respond to the occurrence of emergencies, incidents and accidents so as to eliminate or minimise SFARP, the harm arising
 (2) regain control and restore maritime mission systems and their enabling support systems to their original state of operation after an emergency, incident or accident occurrence
 (3) capture learnings and use them to improve management of risks to the Seaworthiness Outcome
 c. act when an emergency, incident or accident occurs to:
 (1) respond so as to eliminate or minimise SFARP, the harm arising
 (2) regain control and restore maritime mission systems and their enabling support systems to their original state of operation
 (3) report the occurrence in accordance with Capability Manager requirements and any applicable statutory requirements
 (4) capture learnings and use them to improve management of risks to the Seaworthiness Outcome
 (5) report findings and actions.

IMPLEMENTATION
6.9 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:
 a. defined and documented
 b. implemented through orders, instructions and procedures as necessary
 c. resourced appropriately
 d. monitored for adherence and achievement of the policy intent
 e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS
6.10 The Capability Manager must demonstrate that duty holders have identified:

16 Research has demonstrated that "we tend to be over confident about the accuracy of our forecasts and risk assessments and far too narrow in our assessment of the range of outcomes that may occur". See "Management Risk: a New Framework", Harvard Business Review, June 2012, Annette Mikes and Robert S. Kaplan.
a. credible and reasonably foreseeable emergencies, incidents and accidents of a localised nature that may, irrespective of magnitude, result in localised harm (injury or fatality to one or several persons, or localised harm to the environment)

b. credible and reasonably foreseeable emergencies, incidents and accidents that may, irrespective of likelihood, result in catastrophic consequences

c. specific activities and related emergency, incident and accident requirements identified in legislation, which may include, but are not limited to:

(1) incidents at major hazard facilities (‘major incidents’)
(2) plant and structures
(3) hazardous chemicals and asbestos
(4) confined spaces and falls from heights
(5) maximum quantities of pollutants.

6.11 The Capability Manager must ensure duty holders demonstrate that they are prepared for the identified emergencies, incidents or accidents by:

a. Having an appropriate, documented and auditable hazard/risk assessment. Application of Activity and Condition Based Compliance Obligations in accordance with GMCO 2.2 will provide a basis for this assessment.

b. Having a response plan17, where an assessment indicates that an emergency, incident or accident is credible, that considers and addresses:

(1) collaboration with other response agencies such as police and emergency services
(2) immediate action procedures in response to an occurrence – including needs for first responders and for first aid18
(3) recovery procedures to regain control and restore functionality following an occurrence
(4) requirements for post-incident site preservation
(5) requirements for notifications and reporting
(6) provision for exercising and testing of the procedures
(7) information, training and instruction on the implementation of the procedures.

c. Regularly reviewing and revising each hazard/risk assessment and response plan to:

(1) maintain currency and effectiveness

17 The level of detail in the response plan should be proportionate to the magnitude of the potential emergency, incident or accident.

18 Refer Defence Environment and Heritage, and Defence WHS policies for enterprise-wide guidance regarding first response and first aid requirements respectively.
(2) maintain alignment with applicable legislation and enterprise-wide guidance

(3) continually learn and improve through the use of information obtained from analysis of any relevant incident and/or accident within, or external to, Defence to:

(a) determine the effectiveness of extant hazard and risk controls
(b) effect improvements to those controls
(c) improve the response plan.

6.12 The Capability Manager must demonstrate that duty holders respond to emergencies, incidents or accidents in accordance with approved procedures:

a. to eliminate, or minimise SFARP, the harm to people and the environment

b. to regain control and restore maritime mission systems and their enabling support systems to their original state of operation

c. that address statutory or other requirements for

 (1) site preservation
 (2) notifications and reporting
 (3) legal or professional privilege.¹⁹

6.13 The Capability Manager must demonstrate that duty holders conduct investigations in accordance with approved procedures that address:

a. the nature and the root causes of the emergency, incident or accident

b. the management of the response to the emergency, incident or accident and the adequacy of the response plan

c. recommendations for corrective actions, improvements and follow up.

6.14 The Capability Manager must demonstrate that duty holders report the occurrence of emergencies, incidents and accidents in accordance with:

a. the need to inform impacted duty holders of any impairment to the delivery of operational effect or continuity of capability

b. external reporting requirements of federal and state/territory regulatory authorities such as Comcare, the Australian Radiation Protection and

¹⁹ Some incident investigations may be subject to legal professional privilege. Legal professional privilege is a protection afforded by the law to the confidential communication between a client and their lawyer. It applies to documents that have been created for the dominant purpose of obtaining legal advice or in contemplation of legal proceedings.

Certain documents requested by notices may be subject to legal privilege, and external regulators (such as Comcare) cannot compel disclosure of such documents. The privilege is Defence’s privilege and individual personnel are not free to waive that privilege without proper authority.

If a document is marked privileged and confidential, or is otherwise known to be privileged, it is crucial that specific legal advice is sought from Defence Legal before its disclosure or provision.
Nuclear Safety Agency, any state/territory environmental regulatory authority and the Australian Maritime Safety Authority

c. internal reporting requirements, including those of the Defence Seaworthiness Authority.

6.15 The Capability Manager must demonstrate that duty holders have eliminated or minimised SFARP, the likelihood of recurrence of an emergency, incident or accident by:

a. remediating deficiencies in the application of extant controls
b. enhancing existing controls
c. implementing new controls.

GUIDANCE

6.16 Further guidance for this Functional Objective is available at the DSwMS website.20

CHAPTER 7
GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 1.7 - PERFORMANCE MANAGEMENT & CONTINUOUS IMPROVEMENT

FUNCTIONAL OBJECTIVE

7.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 1.7 is defined as:

Performance indicators, assessment activities, intervention measures and assurance processes to manage seaworthiness are established, maintained and used to inform decision-making

OUTCOME

7.2 Evidence is obtained that establishes the level of confidence in achievement of the Seaworthiness Outcome and enables informed decision-making.

7.3 Effectiveness of controls for hazards and risks to the Seaworthiness Outcome is managed and continuously improved based on performance feedback.

RATIONALE

7.4 All systems require feedback to stay in control and operate effectively in a changing environment.

7.5 Performance measurement is required for good decision-making and performance must be measured and managed at the right level by those best placed act. In the context of seaworthiness, measurement must be aligned to duty holders' roles and functions in the three lines of defence Risk Management and Assurance Framework\(^\text{21}\) for management of hazards and risks to the Seaworthiness Outcome.

7.6 This requires an understanding of the type of risk (characterisation), the applicable risk management approach and the timeframes in which hazards and risks need to be managed. Response requirements for hazard and risk management may be vastly different depending on which line of defence the duty holder is operating in:

a. local and major hazards are generally dealt with in the first line of defence with a very short feedback cycle

b. chronic hazardous conditions are generally assessed through a systematic approach to assessing hazards and risks where feedback cycles are often

\(^{21}\) The Risk Management and Assurance Framework is based on the enterprise risk governance concept of three lines of defence, which provides a formal structure to support risk based decision-making and oversight in complex undertakings. The first line comprises the business and operations management (including supporting systems) where risks are managed on a day-to-day basis. The second line comprises the systems of control, which act on the first line (including supporting systems). The third line comprises enterprise-wide controls in response to legislation, government direction or enterprise outcome requirements. Organisations are aligned to the three lines when risk ownership is clearly identified, and functionally independent levels of risk oversight and assurance are provided.
over a longer timeframe, and are generally dealt with by the second and third lines of defence.

7.7 Performance measures must be embedded into decision-making mechanisms to ensure that decisions are evidence based, and that timely and appropriate actions are taken.

7.8 As a seaworthiness Risk Management and Assurance Framework, the three lines of defence are focused on two key aspects of performance:

a. Maturity – to what extent is the process or control defined, implemented and followed

b. Effectiveness – to what extent is the outcome being achieved (does the process or control deliver the necessary effect).

7.9 In the first instance, assurance must seek to provide evidence to those who are best placed to act and improve the system, and to those who own the control. Thus each line of defence must conduct self-assurance against 7.8 (a) and (b).

7.10 In addition, the second and third lines of defence rely on information from the line(s) below for their decisions. Hence duty holders need to conduct assurance independent of the line(s) below in order to have justified confidence in their decisions.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.7

POLICY

7.11 The Capability Manager must enact policies that specify:

a. the requirement for duty holders to establish and maintain a performance management system that addresses the requirements of the DSwMS compliance obligations

b. how assurance will be conducted at the first and second lines of defence so as to:

 (1) ensure that controls intended to address hazards and risks to the Seaworthiness Outcome are resourced, in place and effective for their intended purpose

 (2) satisfy the Capability Manager’s compliance strategy

c. the requirement for duty holders to incorporate seaworthiness performance management and assurance information into decision making.

IMPLEMENTATION

7.12 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented

b. implemented through orders, instructions and procedures as necessary

c. resourced appropriately

d. monitored for adherence and achievement of the policy intent

e. adjusted as necessary to ensure achievement of the policy intent
PERFORMANCE REQUIREMENTS

7.13 The Capability Manager must:

a. Demonstrate understanding of the performance requirements of the DSwMS compliance obligations.

b. Demonstrate understanding of the totality of assurance requirements and subsequent activities as they pertain to seaworthiness, including those assurance activities that occur outside of the chain of command of the Capability Manager. Where such assurance activities occur by other Groups or Services, the Capability Manager may reasonably expect that these are done on their behalf in the seaworthiness context and may through GMCO 1.2 establish appropriate mechanisms to influence assurance activities to meet the Capability Manager's requirements.

c. Demonstrate the effectiveness of assurance for both the first and second lines of defence, including those assurance activities that occur outside of the chain of command of the Capability Manager.

d. Demonstrate that action has been taken on the basis of feedback from performance measurement and assurance activities to maintain control and to continuously improve the ability to achieve the Seaworthiness Outcome.

e. Demonstrate the current state of seaworthiness management for their scope of responsibility.

f. Demonstrate the current state of seaworthiness of maritime mission systems for their scope of responsibility.

g. Report to the DSwR, as soon as is reasonably practicable, any significant failures of compliance with any DSwMS compliance obligation, along with the actions being taken to remedy the non-compliance and prevent any future non-compliance.

7.14 All duty holders must demonstrate an understanding of the Capability Manager’s assurance requirements with respect to seaworthiness management.

22 The duty holder must report to the DSwR where Defence Materiality Criteria or trigger conditions set through the DSwMS are reached or exceeded. See Volume 1, Part 1, Chapter 5, Process 5.
7.15 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).
PART 2: GOAL 2 – MARITIME MISSION SYSTEM AND ENABLING SUPPORT SYSTEM ALIGN WITH CAPABILITY MANAGER’S AUTHORISED OPERATING AND SUPPORT INTENT
CONTENTS

Chapter 1 1–1
Governance and Management Compliance Obligation 2.1 - Define Operating and Support Intent 1–1
 Functional Objective 1–1
 Outcome 1–1
 Rationale 1–1
 Requirements of Functional Objective 2.1 1–2
 Policy 1–2
 Implementation 1–2
 Performance Requirements 1–2
 Guidance 1–3

Chapter 2 2–1
Governance and Management Compliance Obligation 2.2 – Align Systems Design with Operating and Support Intent 2–1
 Functional Objective 2–1
 Outcome 2–1
 Rationale 2–1
 Requirements of Functional Objective 2.2 2–2
 Policy 2–2
 Implementation 2–3
 Performance Requirements 2–3
 Guidance 2–4

Chapter 3 3–1
Governance and Management Compliance Obligation 2.3 – Align Realised Systems With Design 3–1
 Functional Objective 3–1
 Outcome 3–1
 Rationale 3–1
 Requirements of Functional Objective 2.3 3–2
 Policy 3–2
 Implementation 3–2
 Performance Requirements 3–2
 Guidance 3–3

Chapter 4 4–1
Governance and Management Compliance Obligation 2.4 - transition systems to and from service 4–1
 Functional Objective 4–1
 Outcome 4–1
 Rationale 4–1
 Requirements of Functional Objective 2.4 4–2
 Policy 4–2
 Implementation 4–2
 Performance Requirements 4–2
 Guidance 4–2
Chapter 5 5–1
Governance and Management Compliance Obligation 2.5 - Mission and Support System Remain Aligned to Approved Operating and Support Intent 5–1
 Functional Objective 5–1
 Outcome 5–1
 Rationale 5–1
 Requirements of Functional Objective 2.5 5–2
 Policy 5–2
 Implementation 5–2
 Performance Requirements 5–2
 Guidance 5–3
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 1

GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 2.1 - DEFINE OPERATING AND SUPPORT INTENT

FUNCTIONAL OBJECTIVE

1.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 2.1 is defined as:

The Capability Manager's Operating and Support Intent insofar as it relates to the Seaworthiness Outcome is defined to the level required to support seaworthiness management decisions.

OUTCOME

1.2 The Operating and Support Intent (OSI) of the maritime mission system is sufficiently defined such that at any point in time it provides the primary reference point for decisions related to the management of seaworthiness. The OSI must:

a. establish the context for the consideration of Activity and Condition Based Compliance Obligation (ACCO) and thence the determination of the critical controls required to manage hazards and risks to the Seaworthiness Outcome.

b. establish the basis for the development, revision and maintenance of a compliance strategy for the maritime mission system and its enabling support system.

c. provide a clear focus for the integration of FIC to achieve that compliance strategy.

RATIONALE

1.3 Mission systems and their enabling support systems exist to achieve the specified operational effects determined by the Capability Manager. The OSI is the translation of these operational effects into specific operating and support parameters and requirements. While the OSI is a fundamental reference for capability management more broadly, it is also fundamental to the management of seaworthiness.

1.4 From the perspective of managing seaworthiness, the OSI must be defined to a level of detail necessary to support the identification and management of hazards, risks and controls to the Seaworthiness Outcome through the design, realisation, operation and maintenance of the mission system and its enabling support system.

1.5 Consideration must also be given as to whether the maritime mission system OSI sufficiently covers the operating intent and supportability requirements of embarked and deployable subsystems or whether certain embarked or deployable subsystems require their own OSI. Where this is the case, the Capability Manager must ensure that the OSIs of embarked or deployable subsystems are compatible and are integrated with the mission system OSI (see ACCO 3.7).
1.6 The OSI must also continue to evolve through the Capability Life Cycle (CLC), and as changes occur to tasking, usage, operating environment, configuration, and support arrangements or capabilities (see GMCOs 2.5 and 3.3).

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.1

POLICY
1.7 The Capability Manager must enact policy that specifies the:

a. requirement for the scope of the OSI to cover all elements necessary to assure the Seaworthiness Outcome is achieved

b. required level of detail or specificity to which the OSI is defined and documented at each phase in the CLC, in order to:
 (1) establish the context for the consideration of ACCO and thence the determination of the critical controls required to manage hazards and risks to the Seaworthiness Outcome
 (2) establish the basis for the development of a compliance strategy for the maritime mission system and its enabling support system
 (3) provide a clear focus for the integration of FIC to achieve that compliance strategy

c. document approval and control processes

d. configuration management procedures for managing changes to the OSI.

IMPLEMENTATION
1.8 The Capability Manager must:

a. ensure that this policy is:
 (1) defined and documented
 (2) implemented through orders, instructions and procedures as necessary
 (3) resourced appropriately
 (4) monitored for adherence and achievement of the policy intent
 (5) adjusted as necessary to ensure achievement of the policy intent

b. provide appropriate means of communicating the OSI to seaworthiness management duty holders.

PERFORMANCE REQUIREMENTS
1.9 The Capability Manager must demonstrate that the OSI is:

a. valid (suitable and adequate) in that it enables traceability from the capability need to mission system configuration baselines that encompass:
 (1) all FIC
 (2) the life-of-type of the maritime mission system
 (3) the maintenance regime
 (4) all other mission system and supporting system parameters relevant to the achievement of the Seaworthiness Outcome
b. sufficient for seaworthiness management purposes in that it:

 (1) is defined to a level that enables development and maintenance of the mission system compliance strategy and hence can inform application of ACCO across the CLC

 (2) is current (ie specified operational effects, defined tasking, usage and configuration of the mission system align to OSI), available and authorised for use

 (3) allows impacts to the compliance strategy, resulting from any subsequent change in the OSI, to be determined and tracked in context of the achievement of the Seaworthiness Outcome

 (4) informs and supports the outcomes required by GMCO 3.2.

GUIDANCE

1.10 Further guidance for this Functional Objective is available at the DSwMS website.¹

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 2

GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 2.2 – ALIGN SYSTEMS DESIGN WITH OPERATING AND SUPPORT INTENT

FUNCTIONAL OBJECTIVE

2.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 2.2 is defined as:

The functions and performance of the design of the maritime mission system and enabling support system, and the Capability Manager’s authorised Operating and Support Intent are aligned, while hazards and risks to the Seaworthiness Outcome are eliminated or minimised SFARP

OUTCOME

2.2 The function and performance of the mission system and enabling support system as designed is fit for purpose in meeting the Capability Manager’s intent. The hazards and risks to the Seaworthiness Outcome are understood and a strategy for managing the hazard and risk controls is in place.

RATIONALE

2.3 Maximising the likelihood of a maritime mission system achieving the specified operational effect where hazards and risks to people and the environment are minimised SFARP (the Seaworthiness Outcome) occurs where systems are designed, realised, transitioned, operated and supported in alignment with the Capability Manager’s operating and support intent (OSI).²

2.4 Incorporating the ability to achieve the Seaworthiness Outcome into the design of a system is generally more effective and efficient than correcting for shortcomings once the system is realised.

2.5 For pre-existing-systems³, knowledge of the original operating and support intent is necessary if those systems are to be modified, operated and supported to achieve the Seaworthiness Outcome.

2.6 Design is an iterative process and design constraints for new or existing systems may require modification of an OSI through due process as the system moves through the Capability Life Cycle (CLC).

2.7 The design will generally set inherent limitations on hazard and risk controls, which must be understood when operating within the OSI, but more importantly, when excursions beyond the OSI are necessary.

² The OSI is defined through compliance with GMCO 2.1.

³ Typically MOTS / COTS type solutions.
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.2

POLICY

2.8 The Capability Manager must enact policies that ensure that throughout the determination of requirements and the ensuing design development and selection activities for a maritime mission system and its enabling support system, the authorised OSI is considered in undertaking seaworthiness hazard identification, risk evaluation and the development of hazard and risk controls. The policy must ensure the consideration of hazards and risks including, but not limited to those:

a. of a localised nature, such as risks to the functional performance of a discrete aspect of the maritime mission system necessary to achieve the specified operational effect(s), or which might result in localised harm, irrespective of magnitude (i.e., harm is contained albeit consequences may range from minor injuries to fatality of one or several persons, or localised harm to the environment)

b. that may result in catastrophic consequences, irrespective of likelihood, in order to ensure sufficient specific controls are provided, including command and management systems and arrangements

c. that may arise throughout the CLC and which must take account of the disposal phase

d. of an operational, safety or environmental nature that relate to the operation or support of the maritime mission system itself, including but not limited to:
 (1) hazards created by the natural environment (sea state, temperature, pressure, wind)
 (2) hazards the maritime mission system might create for the environment (through areas of operation, operating doctrine, etc)
 (3) critical hazards relating to safety, environment or operations; such as hazards relating to structural integrity, life support (including breathing atmospheres, fire fighting and damage control), life saving capability and capacity, suitably qualified and experienced personnel (SQEP) for role etc (note: this may be done through compliance with ACCOs)
 (4) hazards created by the function and role of the maritime mission system, including:
 (a) interactions between the maritime mission system and other mission systems
 (b) interactions between the maritime mission system and the general public
 (c) reasonably foreseeable threats
 (5) limitations in the state of technology
 (6) hazards during all phases of the CLC

e. relating to normal (at sea, alongside/in maintenance), degraded and emergency operating states of the maritime mission system

f. relating to the capacity and suitability of the enabling support system to sustain the maritime mission system in a seaworthy state, including those:
(1) created through critical enabling functions such as operating and materiel maintenance philosophy and doctrines (compatibility and interoperability with existing approaches and systems), and safety and environmental management systems compatibility and interoperability.

(2) related to the adequacy of critical support system elements such as supplies, infrastructure, information systems, SQEP, manning to maintain critical functions, industry support and ability to grow or maintain support capability, emergency services, contingency arrangements, etc.

(3) related to funding or organisational change, such as funding shortfalls adversely affecting the provision of spares, documentation, or training; or reorganisation leading to transitional or ongoing shortfalls in personnel numbers or competencies, etc.

g. relating to critical support system interface functions such as shore power, lift and load capabilities etc.

2.9 The policy must ensure that duty holders refer to the Activity and Condition Based Compliance Obligations (ACCOs) and identify those that are applicable in the context of the OSI. This will facilitate the consideration of, and identification of controls for, hazards and risks to be articulated in a compliance strategy as required by Volume 1, Part 1, Chapter 5. ACCOs can be accessed at DSwMSMAN Volume 3 with further guidance via the DSwMS website.

IMPLEMENTATION

2.10 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented
b. implemented through orders, instructions and procedures as necessary
c. resourced appropriately
d. monitored for adherence and achievement of the policy intent
e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

2.11 The Capability Manager must be able to demonstrate that:

a. The design is documented and traceable to the OSI.
b. The OSI and the design are aligned:

4 For example a class of ship may be acquired that was designed with a maintenance philosophy which may differ from the approach the Capability Manager has embodied in policy. These philosophies must align or the differences and effects must be understood and risk managed. As another example, the safety management system employed by a contractor, may not have the necessary interoperability with the Capability Manager's safety management system.

(1) where the design is pre-existing (eg off the shelf), this may constitute a limitation to the OSI thus the impact of the limitation must be reflected through amendment of the OSI

(2) where no pre-existing design exits, the design must fully reflect the requirements articulated in the OSI.

c. Alignment between the OSI and the design is maintained where either is required to change for any reason. Such circumstances may include, but are not limited to:

(1) the design cannot meet the specified requirement as articulated in the OSI

(2) the Capability Manager amends the OSI.

d. Where the OSI is amended, it continues to meet the requirements of GMCO 2.1.

e. Understanding of the approved design is sufficient that hazards and risks can be identified and assessed through application of the ACCO process to further develop the compliance strategy for the mission system and its enabling support system.

GUIDANCE

2.12 Further guidance for this Functional Objective is available at the DSwMS website.⁶

CHAPTER 3

GOVERNANCE AND MANAGEMENT COMPLIANCE

OBLIGATION 2.3 – ALIGN REALISED SYSTEMS WITH DESIGN

FUNCTIONAL OBJECTIVE

3.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 2.3 is defined as:

A maritime mission system and its enabling support system are realised consistent with the approved design

OUTCOME

3.2 The maritime mission system and its enabling support system are delivered as per the function and performance requirements of the approved design and the operating and support intent (OSI).

3.3 The hazard and risk controls are realised as articulated in the compliance strategy.

RATIONALE

3.4 Maximising the likelihood of a maritime mission system achieving the specified operational effect where hazards and risks to people and the environment are minimised so far as is reasonably practicable (SFARP) (the Seaworthiness Outcome) occurs where systems are designed, realised, transitioned, operated and supported in alignment with the Capability Manager’s OSI.7

3.5 ‘Realised’ in a Defence Seaworthiness Management System (DSwMS) context means the development, integration and commitment of all elements necessary to deliver the systems as designed to satisfy the OSI. It therefore includes all relevant FIC.

3.6 The systems as realised may result in further limitations on hazard and risk controls than intended through design (ie functional and performance criteria for hazard and risk controls may not have been achieved). Where this is the case, these limitations must be understood and managed when transitioning to service. In some cases, in order to maintain control over hazards and risks SFARP, it may be necessary to realign the:

a. configuration baseline
b. life-of-type
c. maintenance and support regime
d. extant OSI.

7 The OSI is defined through compliance with GMCO 2.1.
3.7 Realisation occurs not only in the initial establishment of a mission system and its enabling support systems, but also when a system is taken out of the control of the Capability Manager’s in-service representative for a major upgrade or configuration change. Refer also to GMCO 2.4.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.3

POLICY

3.8 The Capability Manager must enact policies that, throughout the process of realising a mission system and enabling support system, ensure that:

a. alignment is maintained with the OSI and where deficiencies exist in the realised systems, that policies and OIP require alignment is established either through:
 (1) appropriate configuration management mechanisms
 (2) amendment of the design and subsequently the OSI by SQEP and with the authority of the Capability Manager’s representative

b. the function and performance of the realised systems are verified to be in accordance with the requirements of the approved design

c. adequate information is provided to enable the systems to be operated as intended, including but not limited to:
 (1) the extant OSI
 (2) design constraints and limitations of the realised systems (some of which may only become apparent during verification)
 (3) controls for the hazard and risks to the Seaworthiness Outcome in the context of the design.

IMPLEMENTATION

3.9 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented
b. implemented through orders, instructions and procedures as necessary
c. resourced appropriately
d. monitored for adherence and achievement of the policy intent
e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

3.10 The Capability Manager must demonstrate that:

a. The realised system is traceable to the approved design.

b. The function and performance requirements of the hazard and risk controls have been achieved in the realised system as designed. The level of validation and verification should be proportional to the level of risk associated with the system in question.
c. Any hazards and risks introduced through test and evaluation activities are identified assessed and eliminated or minimised SFARP through application of suitable controls.

d. Where aspects of the realised system are identified as deficient with respect to the design:
 (1) the hazards and risks associated with the deficiencies have been identified and assessed
 (2) the hazards and risks associated with the deficiencies have been addressed through controls developed in consultation with appropriate stakeholders
 (3) the reasons for the deficiency and resultant corrective actions have been recorded and communicated as necessary.

e. Where deficiencies in the realised system exist, or the Capability Manager amends the OSI during realisation, that alignment with OSI has been re-established and that the OSI continues to meet the requirements of GMCO 2.1 (this ensures line-of-sight is maintained between the capability need and the configuration baseline).

f. The compliance strategy has been updated to maintain alignment with the realised system and to reflect any changes arising from (a) through (e) above. In some cases this may involve amendment of AMOCs where the realised system is unable to satisfy the function and performance criteria and therefore additional administrative controls or other controls as appropriate may be required.

GUIDANCE

3.11 Further guidance for this Functional Objective is available at the DSwMS website.

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 4

GOVERNANCE AND MANAGEMENT COMPLIANCE OBLIGATION 2.4 - TRANSITION SYSTEMS TO AND FROM SERVICE

FUNCTIONAL OBJECTIVE

4.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 2.4 is defined as:

Management of hazards and risks to the Seaworthiness Outcome is maintained throughout transitions of the mission system and its enabling support systems to and from control of the Capability Manager’s in-service representative.

OUTCOME

4.2 Seaworthiness management accountabilities and knowledge, necessary for the management of hazards and risks relating to the Seaworthiness Outcome, are formally transferred to the Capability Manager’s in-service representative following realisation of a maritime mission system and its enabling support system.

4.3 Where a mission system and its enabling support system are removed from the control of the Capability Manager’s in-service representative for any reason, accountabilities and knowledge, necessary for the management of hazards and risks relating to the Seaworthiness Outcome, are formally transferred to the appropriate authorities. Such circumstances may include, but are not limited to:

a. mid-life upgrades
b. major configuration changes.

RATIONALE

4.4 Maximising the likelihood of a maritime mission system achieving the specified operational effect where hazards and risks to people and the environment are minimised so far as is reasonably practicable (SFARP) (the Seaworthiness Outcome) occurs where systems are designed, realised, transitioned, operated and supported in alignment with the Capability Manager’s operating and support intent (OSI).\(^9\)

4.5 Transition in a seaworthiness context applies to the transfer of control of the mission system and its enabling support systems to and from the Capability Manager’s in-service representative.

4.6 Transition into service includes all those elements that are necessary to achieve and sustain operational service.

\(^9\) The OSI is defined through compliance with GMCO 2.1.
4.7 Transition of mission systems and enabling support systems into and out of service can create uncertainties or ambiguities in accountabilities with respect to the management of hazards and risks to the Seaworthiness Outcome.

4.8 In addition, transition is frequently a point where knowledge necessary to effectively manage hazards and risks to the Seaworthiness Outcome is lost or inadequately transferred.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.4

POLICY

4.9 The Capability Manager must enact policies that ensure the accountabilities and knowledge, necessary for the management of hazards and risks relating to the Seaworthiness Outcome, are formally transferred to and from the Capability Manager’s in-service representative where mission systems and enabling support systems transition into or out of service.

IMPLEMENTATION

4.10 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented

b. implemented through orders, instructions and procedures as necessary

c. resourced appropriately

d. monitored for adherence and achievement of the policy intent

e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

4.11 The Capability Manager must demonstrate that:

a. accountabilities for the management of hazards and risks to the Seaworthiness Outcome are clear, understood, accepted and documented at all times

b. the knowledge necessary for management of hazards and risks relating to the Seaworthiness Outcome of the mission system and its enabling support system is transferred during transitions of control to and from the Capability Manager’s in-service representative

c. transition planning takes into account all elements (including all FIC) necessary to manage hazards and risks to the Seaworthiness Outcome.

GUIDANCE

4.12 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).
CHAPTER 5

GOVERNANCE AND MANAGEMENT COMPLIANCE OBLIGATION 2.5 - MISSION AND SUPPORT SYSTEM REMAIN ALIGNED TO APPROVED OPERATING AND SUPPORT INTENT

FUNCTIONAL OBJECTIVE

5.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 2.5 is defined as:

A maritime mission system and its enabling support system remain aligned with the Capability Manager’s approved operating and support intent

OUTCOME

5.2 Mission systems, and their enabling support systems, remain aligned with the approved operating and support intent (OSI) throughout the Capability Life Cycle (CLC).

RATIONALE

5.3 Maximising the likelihood of a maritime mission system achieving the specified operational effect where hazards and risks to people and the environment are minimised so far as is reasonably practicable (SFARP) (the Seaworthiness Outcome) occurs where systems are designed, realised, transitioned, operated and supported in alignment with the Capability Manager’s OSI.11

5.4 GMCOs 2.1–2.4 aim to ensure that mission systems and their enabling support systems are aligned to the OSI throughout design, realisation and transition activities. However, misalignment can occur unintentionally if the significance of changes or decisions made during these activities are not recognised. Misalignment also often occurs as a result of the accumulation of minor changes over time. Examples of changes that can cause misalignment include:

a. changes to the intended tasking
b. changes to support arrangements
c. work arounds or error rectifications that have unintended or consequential ('knock-on') effects, particularly where these effects occur in other parts of the system.

5.5 Misalignment increases risk to the Seaworthiness Outcome. Constant vigilance is therefore required to detect misalignment. Once misalignment has been detected, action needs to be taken to either:

11 The OSI is defined through compliance with GMCO 2.1.
a. return the mission system and its enabling support system to the level of functionality and performance required by the OSI and to meet the requirements of its compliance strategy
b. redefine the OSI and update the compliance strategy through an approved process that takes into account the short and long term implications for achieving the Seaworthiness Outcome
c. do a combination of (a) and (b) above.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.5

POLICY
5.6 The Capability Manager must enact policies that:
 a. require duty holders to establish and maintain systems to monitor the alignment of a mission system and its enabling support system with its OSI
 b. on detection of misalignment, require duty holders to:
 (1) return the mission system and its enabling support system to the level of functionality and performance required by the OSI and to meet the requirements of its compliance strategy; and/or
 (2) use a structured and formalised change management approach, consistent with relevant Defence Seaworthiness Management System (DSwMS) compliance obligations and which must be applied to:
 (a) variations to the OSI
 (b) proposed modifications to a maritime mission system which are not driven by changes to the OSI but which affect the associated OSI
 (c) variations to enabling support system functions which affect the associated OSI.

IMPLEMENTATION
5.7 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:
 a. defined and documented
 b. implemented through orders, instructions and publications
 c. resourced appropriately
 d. monitored for adherence and achievement of the policy intent
 e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS
5.8 The Capability Manager must demonstrate that alignment between the OSI and the designed and realised systems is:
 a. being monitored effectively, not just for the impacts of major changes, but also for the cumulative impact of numerous small changes
b. maintained where change is required for any reason, including, but not limited to:

(1) the Capability Manager amends the OSI
(2) changes to legislation require different solutions (eg emission control)
(3) technology becomes redundant or obsolete
(4) the life-of-type of a maritime mission system is extended
(5) new or changed operational requirements emerge

c. controlled through a structured and formalised change management approach.

GUIDANCE

5.9 Further guidance for this Functional Objective is available at the DSwMS website.12

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
PART 3: GOAL 3 – SYSTEMS ARE OPERATED AS INTENDED
CONTENTS

Chapter 1
Governance and management compliance obligation 3.1 - Ensure Operating and support intent is understood
 Functional Objective
 Outcome
 Rationale
 Requirements of Functional Objective 3.1
 Policy
 Implementation
 Performance Requirements
 Guidance

Chapter 2
Governance and management compliance obligation 3.2 - operate & support systems as intended
 Functional Objective
 Outcome
 Rationale
 Requirements of Functional Objective 3.2
 Policy
 Implementation
 Performance Requirements
 Guidance

Chapter 3
Governance and Management Compliance Obligation 3.3 – Operating and Support Intent is Evolved as Required
 Functional Objective
 Outcome
 Rationale
 Requirements of Functional Objective 3.3
 Policy
 Implementation
 Performance requirements
 Guidance
CHAPTER 1

GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 3.1 - ENSURE OPERATING AND SUPPORT INTENT IS UNDERSTOOD

FUNCTIONAL OBJECTIVE

1.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 3.1 is defined as:

The Capability Manager’s operating and support intent is understood by operators and in-service support providers.

OUTCOME

1.2 Operators and in-service support providers of mission systems and their enabling support systems understand the boundaries articulated by the operating and support intent (OSI), beyond which the system of controls may not be effective in supporting the achievement of the Seaworthiness Outcome.

1.3 With respect to the OSI, operators and in-service support providers understand the:

a. performance standards
b. operating concept
c. operating parameters/limits/envelope(s).

1.4 With respect to critical seaworthiness controls, operators and in-service support providers understand the:

a. hazards and risks which the controls are designed to manage
b. way which the systems of control act to prevent loss of control, regain control or mitigate loss of control, when operating within the boundaries of the OSI
c. limitations of the systems of control when operating beyond the boundaries of the OSI.

RATIONALE

1.5 Hazard and risk controls are designed and realised to be effective and reliable when the mission system is operated and supported within the boundaries defined by the OSI (as required through compliance with all of Goal 2).

1.6 The compliance strategy of a mission system and its enabling support system defines the systems of control for hazards and risks to the Seaworthiness Outcome through the acceptable means of compliance for each Activity and Condition Based Compliance Obligation (as required through compliance with GMCO 2.2).

1.7 If there is an excursion beyond the limits of the OSI, these systems of control may no longer be reliable and effectiveness may be impaired even on return to operation within the OSI.
1.8 Therefore, operators and in-service support providers must understand these limits so that they can remain within the bounds of the OSI or are deliberate in the management of hazards and risks where excursions beyond these boundaries occur.

1.9 Policies to be followed when boundary excursions occur in the operation or support of a mission system are at GMCOs 1.3, 3.2 and 3.3.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.1

POLICY

1.10 The Capability Manager must ensure that policy is enacted that requires:

a. that with respect to the OSI, operators and in-service support providers understand the:
 (1) performance standards
 (2) operating concept
 (3) operating parameters/limits/envelope(s)

b. that with respect to the systems of controls, operators and in-service support providers understand the:
 (1) hazards and risks which the controls are designed to manage
 (2) the ways in which the systems of control act to prevent loss of control, regain control or mitigate loss of control, when operating within the boundaries of the OSI
 (3) the limitations of the systems of control when operating beyond the boundaries of the OSI.

IMPLEMENTATION

1.11 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented
b. implemented through orders, instructions and procedures as necessary
c. resourced appropriately
d. monitored for adherence and achievement of the policy intent
e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

1.12 Operators and in-service support providers must demonstrate that:

a. they are mindful of all relevant aspects of the applicable OSI(s) as they relate to the performance of their duties

b. they can articulate and recognise the boundaries of the applicable OSI(s) that exist with respect to the performance of their duties

c. they understand how the systems of control that are relevant to the performance of their duties work and the limitations of these systems
d. that they understand the implications of their decisions and actions for the achievement of the Seaworthiness Outcome.

GUIDANCE

1.13 Further guidance for this Functional Objective is available at the DSwMS website.¹

CHAPTER 2
GOVERNANCE AND MANAGEMENT COMPLIANCE
OBLIGATION 3.2 - OPERATE & SUPPORT SYSTEMS AS INTENDED

FUNCTIONAL OBJECTIVE

2.1 The Functional Objective of Governance and Management Compliance Based Obligation (GMCO) 3.2 is defined as:

A maritime mission system and its enabling support system are operated in accordance with the Capability Manager's operating and support intent.

OUTCOME

2.2 There is justified confidence that a maritime mission system is prepared, employed and supported in accordance with its approved operating and support intent (OSI) and will achieve the Seaworthiness Outcome.

2.3 Hazards and risks, as they relate to the achievement of the Seaworthiness Outcome by the maritime mission system and its enabling support system, are known, understood and eliminated or minimised so far as is reasonably practicable (SFARP), in the operation of the systems.

2.4 Evidence is available, through assurance, to justify confidence in the achievement of the Seaworthiness Outcome.

RATIONALE

2.5 Maximising the likelihood of a maritime mission system achieving the specified operational effect where hazards and risks to people and the environment are minimised SFARP (the Seaworthiness Outcome) occurs where systems are designed, realised, transitioned, operated and supported in alignment with the Capability Manager's OSI.

2.6 Hazard and risk controls are designed and realised to be effective and reliable when the mission system is operated and supported within the boundaries defined by the OSI.

2.7 The compliance strategy of a mission system and its enabling support system defines the systems of control for hazards and risks to the Seaworthiness Outcome through the acceptable means of compliance for each ACCO.

2.8 If there is an excursion beyond the limits of the OSI, these systems of control may no longer be reliable and effectiveness may be impaired even on return to operation within the OSI.

2 The OSI is defined through compliance with GMCO 2.1.
2.9 Deliberate management of hazards and risks through an approved risk management methodology (established under GMCO 1.3) is required where excursions beyond the OSI occur.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.2

POLICY

2.10 The Capability Manager must enact policies that require the authorities responsible for operating a maritime mission system and/or its enabling support system to:

a. Establish and maintain systems to monitor the operation of a mission system and its enabling support system with respect to the approved OSI.

b. Operate the system within its approved OSI SFARP.

c. Follow an approved risk management methodology where excursions beyond the OSI occur in accordance with GMCO 1.3.

d. Establish and maintain operational assurance requirements specific to a maritime mission system and its enabling support system. These requirements must be identified and then be verified as being met, current and consistent with the authorised OSI prior to operation. They include but are not limited to:

 (1) certification, licensing, and authorisation

 (2) orders, instructions and procedures

 (3) Suitably Qualified and Experienced Personnel

 (4) management arrangements consistent with intended operations.

e. Establish and maintain appropriate arrangements for the enabling support system prior to the operation of a maritime mission system. These arrangements must address the preparedness of the support system to enable the maritime mission system to meet its approved OSI and achieve the Seaworthiness Outcome.

IMPLEMENTATION

2.11 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:

a. defined and documented

b. implemented through orders, instructions and procedures as necessary

c. resourced appropriately

d. monitored for adherence and achievement of the policy intent

e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS

2.12 The Capability Manager must demonstrate:

a. traceability of maritime mission system and enabling support system usage to the OSI
b. that monitoring of operations anticipates, warns and tracks excursions beyond the OSI

c. that where excursions of a maritime mission system and/or its enabling support system outside the OSI occur, the appropriate hazard and risk management methodology is applied as required by GMCO 1.3 and any subsequent amendments to the OSI are made in accordance with GMCO 3.3.

GUIDANCE

2.13 Further guidance for this Functional Objective is available at the DSwMS website.³

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 3

GOVERNANCE AND MANAGEMENT COMPLIANCE

OBLIGATION 3.3 – OPERATING AND SUPPORT INTENT IS EVOLVED AS REQUIRED

FUNCTIONAL OBJECTIVE

3.1 The Functional Objective of Governance and Management Compliance Obligation (GMCO) 3.3 is defined as:

The Operating and Support Intent of a maritime mission system and its enabling support system is evolved as required, to deliver the Seaworthiness Outcome

OUTCOME

3.2 The operating and support intent (OSI) reflects actual usage so that controls for hazards and risks to the achievement of the Seaworthiness Outcome, developed during the design and implemented during the realisation of the maritime mission system and its enabling support system, can be evolved through the remainder of the Capability Life Cycle (CLC).

3.3 The controls for hazards and risks to the achievement of the Seaworthiness Outcome specified in the compliance strategy provide justified confidence in the achievement of the Seaworthiness Outcome during operation in accordance with the OSI, throughout the life of type.

RATIONALE

3.4 Maximising the likelihood of a maritime mission system achieving the specified operational effect where hazards and risks to people and the environment are minimised SFARP (the Seaworthiness Outcome) occurs where systems are designed, realised, transitioned, operated and supported in alignment with the Capability Manager's OSI.4

3.5 Emerging requirements, government direction or other factors may lead to a maritime mission system being required for use outside of its original intended purpose. Thus an ongoing review of the OSI by the Capability Manager must continue until the eventual disposal of the maritime mission system, with the OSI evolving to reflect necessary changes in a timely manner. All such changes must be effectively communicated to all affected stakeholders.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.3

POLICY

3.6 The Capability Manager must enact policies that specify that:

4 The OSI is defined through compliance with GMCO 2.1.
a. In the case of a discrete activity outside of the OSI (excursion), the activity must be deliberately risk-managed in accordance with GMCO 1.3. These circumstances should be an exception, rather than rule, under the DSwMS.

b. In all cases where there is misalignment between the OSI and the operation of the realised system, consideration must be given to any long-term implications and the requirement for formal change to any or all of the:
 1. configuration baseline
 2. life-of-type
 3. maintenance and support regime
 4. extant OSI.

IMPLEMENTATION
3.7 The Capability Manager must identify duty holders who are responsible for sponsoring and managing the policy and ensure that the policy is:
 a. defined and documented
 b. implemented through orders, instructions and procedures as necessary
 c. resourced appropriately
 d. monitored for adherence and achievement of the policy intent
 e. adjusted as necessary to ensure achievement of the policy intent.

PERFORMANCE REQUIREMENTS
3.8 The Capability Manager must demonstrate that:
 a. the OSI is measured in context of a mission systems configuration, the activities it is conducting and the operating environment in which those activities are being performed
 b. in context of the measures above, alignment is maintained or re-established where required between the OSI and the realised system
 c. any changes to the OSI are made through a formal controlled process that ensures decisions, impacts and implications are understood and communicated to relevant stakeholders.

GUIDANCE
3.9 Further guidance for this Functional Objective is available at the DSwMS website.5

VOLUME 3: DEFENCE SEAWORTHINESS MANAGEMENT
SYSTEM MANUAL ACTIVITY AND CONDITION BASED
COMPLIANCE OBLIGATIONS

Contents

Part 0: ACCO Goals
Part 1: ACCO Goal 1
Part 2: ACCO Goal 2
Part 3: ACCO Goal 3
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
PART 0: ACCO GOALS
CONTENTS

Chapter 1 1–1

Goals and unifying requirements for activity and condition based compliance obligations 1–1

- Activity and condition based compliance obligation goals 1–1
 - Outcome 1–1
- Unifying requirements 1–1
- Physical requirements 1–3
 - Outcome 1–4
 - Rationale 1–4
 - Physical element requirements 1–5
- Personnel requirements (competency and capacity) 1–6
 - Outcome 1–6
 - Rationale 1–6
 - Personnel element requirements 1–7
- Command and control requirements 1–8
 - Outcome 1–8
 - Rationale 1–8
 - Command and control element requirements 1–9
- Security requirements 1–9
 - Outcome 1–10
 - Rationale 1–10
 - Security element requirements 1–10
- Implementation maturity requirements 1–10
 - Outcome 1–10
 - Rationale 1–11
 - Implementation maturity element requirements 1–11
- Guidance 1–11
CHAPTER 1

GOALS AND UNIFYING REQUIREMENTS FOR ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATIONS

ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION GOALS

1.1 At the mission system level, the Activity and Condition Based Compliance Obligation (ACCO) goals below, in conjunction with the Governance and Management Compliance Obligation (GMCO) goals, collectively achieve the Seaworthiness Outcome (the “Aim”).

Goal 1: The functions necessary for the mission system to exist and endure are established, monitored and maintained

1.2 The structural elements of a maritime mission system are able to provide the physical form that withstands foreseeable loads and impacts; maintains a boundary with the external environment; and contains and protects an internal environment suitable for personnel and systems.

Goal 2: The functions necessary for mission systems to move and maintain position are established, monitored and maintained

1.3 Mission systems usually need to position themselves in order to achieve their defined tasks. Each mission system therefore needs to be able to maintain control of its speed, course, orientation and position to the degree required by its OSI.

Goal 3: The functions necessary for the mission system to perform the tasks are established, monitored and maintained

1.4 The purpose of a mission system is to achieve the required operational effects through performing defined tasks. This will often involve the use of specific military systems (e.g., detectors and effectors). The capability to perform a defined task will often need to be maintained or restored in the face of damage or impairment.

OUTCOME

1.5 All functions necessary for the mission system to exist and endure, move and maintain position, and to perform the defined tasks are aligned with the operating and support intent (OSI), and the specified functional performance of the physical, personnel, and command and control constituents are established, monitored and maintained for the intended life.

UNIFYING REQUIREMENTS

1.6 Consistent with Defence Seaworthiness Management System Manual’s (DSwMS) outcome-focused goal-based regulatory approach; the goals above are underpinned through functional objectives. The functional objectives sum to deliver the goals which in turn, sum to deliver the aim (the Seaworthiness Outcome). Each ACCO articulates a set of functional objectives. The design, realisation and operation of a mission system must result in solutions which meet those functional objectives in context of its OSI.

1.7 Each ACCO also articulates requirements and considerations which pertain to risks which might prevent achievement of the functional objective, or which may
result through achieving the functional objective. For example, a ballast water system may be necessary to achieve stability (a functional objective). A failure to maintain or operate the ballast system correctly may result in failure to achieve the stability required. However, achieving stability through ballast water transfer, may introduce a risk to the environment through harmful pest translocation. In addition, this may also introduce a flow-on risk to operating through possible denial of port access as a result of failing to meet local environmental management standards.

1.8 The ACCOs aim to consolidate the current knowledge of hazards, risks and controls as they relate to maritime mission systems, at a functional level, that guides and enables selection and application of controls appropriate in context of the OSI. That is the functional objectives are defined in a manner that allows them to be interpreted and applied so a particular mission system can control hazards and risks as appropriate to its specific context.

1.9 Functional objectives are achieved though the collective and integrated contribution of the constituent elements of a mission system - physical, personnel and command and control. That is:

a. Physical elements form the basis of all mission systems. Physical elements include all the inanimate things that are necessary to constitute the mission system, as distinct from personnel. This includes, for example, structures, machinery, equipment, hardware, software, consumables (such as fuels, lubricants, munitions) and so on.

b. Almost all mission systems require interaction with personnel. The OSI and the physical elements of a mission system will usually set the personnel requirements, while human factors will usually have to be taken into account in the design and use of the physical elements. In accordance with GMCO 2.1 and 3.1, the OSI needs to be sufficiently defined and understood to provide guidance with respect to personnel and their interaction with the physical elements. Personnel must be trained and perform their tasks in an environment that enables the task to be sustained - they must be effective in their role which also requires that they be kept safe and well.

c. All mission systems operate in complex and dynamic environments. For a mission system to achieve its defined tasks, decisions must be made, communicated and executed - efficiently and effectively. this requires each mission system to have appropriate integration of physical elements and personnel, as well as systems of communication, authority, command and control.

1.10 It follows that seaworthiness hazards and risks are managed through the function and performance of the constituent elements. Failure of those constituents to function and perform to the required levels lessens the likelihood of achieving the operational effect for the defined task; and may expose personnel, public and the environment to harm (there is risk to the Seaworthiness Outcome). The Seaworthiness Regulator is interested in consequences relating to the inability of the mission system to achieve the defined task, harm to persons and harm to the environment. Therefore, the mission system must have systems of control that:

a. in the first instance, prevent loss of control

b. where control has been lost, regain control
and should regaining control be unachievable, eliminate or minimise consequences.

1.11 The above concepts can be represented through the following argument. If a mission system has systems of control designed to meet the ACCO Functional Objectives in the context of its OSI and it can demonstrate through these systems of control that:

a. physical elements of a mission system are suitable (fit for purpose), reliable and supportable

b. and personnel elements are competent in their roles and there are sufficient numbers to sustain the task

c. and decision rights (including authorities and delegations) as applicable to achieving activities and tasks are understood and executed appropriately, and decisions are made by the authorised persons in a timely manner and executed effectively in accordance with the intent

d. and appropriate security provisions to address vulnerabilities are established, monitored and maintained

e. and all systems of control are implemented to a level of maturity that is appropriate and effective for the mission system, given its phase in the Capability Life Cycle (CLC)

Then it is reasonable to expect that the systems of control can act collectively to achieve the Seaworthiness Outcome.

1.12 Therefore, ACCO requirements call for solutions (systems of control) that act on or are enacted through one or more of these constituents to ensure they function and perform to the appropriate levels as they apply to each functional objective in the context of the OSI (refer Vol 1, Chap 3, Annex C for further information regarding systems of control).

1.13 There are a set of common and unifying requirements that apply to all constituents and across all ACCOs, as well as unique requirements specified in each ACCO. The unifying requirements for each constituent are described below.

1.14 The systems of control must meet both the unique requirements specified in each ACCO, as well as the common and unifying requirements for each constituent described below.

1.15 The ACCO requirements also recognise that the maturity of controls must be appropriate to the requirements of the specific phase of the CLC that the mission system is currently in. For example, during commissioning, there may be a requirement that fire fighting and damage control functions be available prior to specific test and trial activities. In addition, the requirements of each ACCO will have associated vulnerabilities (point of weakness) that must be identified, managed and controlled. Thus, security is an integral component of a system of control and must be considered across each ACCO.

PHYSICAL REQUIREMENTS

1.16 The physical elements general requirement is defined as:
All physical elements necessary to achieve the ACCO Functional Objectives in accordance with the OSI are established, monitored and maintained for the intended life.

OUTCOME

1.17 Physical elements function to a level of performance that enables the mission system to operate in accordance with its OSI (achieved in conjunction with the specific physical element requirements of each ACCO).

1.18 Physical elements function at a level of reliability that enables the mission system to operate in accordance with its OSI.

1.19 Physical elements are supported in a way that enables the mission system to operate in accordance with its OSI.

RATIONALE

1.20 The specific functional objective and requirements of physical elements are defined in the ACCOs, therefore the common unifying requirements that follow focus on the critical characteristics applicable to all physical elements from a seaworthiness perspective, as follows:

a. **Reliability.** The performance characteristics of physical elements and systems, which are primarily about the ability of an element or system to perform its required functions within specified tolerances under specified conditions for a specified time. The reliability of physical elements and systems needs to be at levels which allow the mission system as a whole to achieve its defined tasks and availability as specified in the OSI.

b. **Supportability.** The characteristic of physical elements and systems, which is primarily about the ability of an element or system to be maintained at or restored to meet the specified performance and condition. The supportability of physical elements and systems needs to be at levels which allow the Mission System as a whole to achieve its defined tasks and availability as specified in the OSI, for the intended life.

c. **Compatibility.** The characteristic of physical elements and systems, which is primarily about the ability of an element or system to coexist or interact appropriately with other elements, systems, personnel and the environment.

1.21 Many physical elements are difficult to change once the mission system has been realised. Thus it is imperative that the functions and performance align with the operating intent and that reliability and supportability of these physical elements be planned and managed from as early as practicable in the Capability Life Cycle. This in turn, requires that the OSI is sufficiently evolved and understood to provide the necessary guidance in accordance with GMCO 2.1 and 3.2.

1.22 Moreover, ongoing management of the physical elements, including all supportability requirements, is necessary to sustain achievement of the Seaworthiness Outcome in accordance with GMCO 2.5 and 3.3. For a variety of reasons, physical elements are subject to degradation over time which can lead to loss of functional performance that may be gradual or catastrophic in nature. In addition, other physical elements are consumed and require replenishment on an ongoing basis. Therefore, physical elements require upkeep, update, resupply and upgrade (in accordance with OSI requirements); all of which need to be supported.
through supply chains. In addition, physical elements may become obsolete due to them no longer being needed, or being no longer supportable.

1.23 Physical elements are required to interact with other physical elements, personnel and the environment. Where such interactions occur consideration must be given to the compatibility of physical elements consistent with the Seaworthiness Outcome. Such considerations may include but are not limited to:

a. human factors and ergonomics
b. selection of materials and substances
c. requirements for isolation or separation

1.24 Circumstances may arise where physical elements do not function reliably or are not supported appropriately. Such, circumstances may arise where, for example:

a. operating environments are not adequately considered during design
b. systems are operated outside of the original design intent
c. systems support is not aligned with use (eg maintenance regime inadequate)
d. inappropriate deferral of maintenance occurs
e. trade off of longer term maintenance requirements occur in favour of shorter term operational requirements where remediation action is not conducted (eg not planned and executed)
f. operation of a maritime mission system exceeds design criteria through unforeseen event (eg excessive sea state).

PHYSICAL ELEMENT REQUIREMENTS

1.25 The duty holder must demonstrate that physical elements and systems as they relate to each ACCO:

a. Perform their functions at a level of reliability that enables the mission system to operate in accordance with its OSI. This means that:
 (1) each physical element has a defined reliability target or standard against which it is being managed
 (2) the reliability target or standard is traceable and reconcilable to the OSI
 (3) the costs, benefits and risks associated with managing to that standard, from the perspective of the mission system as a whole are understood
 (4) the actual reliability is being monitored and managed with respect to the target or standard.

b. Are supported in a way that enables the mission system to operate in accordance with its OSI. This means that:
 (1) each physical element has a defined support regime covering supply and replacement, performance and condition monitoring, maintenance and repair, and obsolescence
 (2) the support regime is traceable and reconcilable to the OSI
 (3) the costs, benefits and risks associated with using the defined support regime, from the perspective of the mission system and its supporting systems as a whole are understood
(4) adherence to the support regime is being monitored and managed
(5) the support regime is being regularly reviewed and improved, from the
perspective of the mission system and its supporting systems as a
whole.

c. Are compatible, taking into account:
(1) system to system interactions (eg electromagnetic, cathodic, noise and
vibration, thermal transfer, contaminant transfer, vent locations relative
to intake locations)
(2) human factors, including but not limited to maintenance access,
ergonomics and ease of use, required level of operator skill and
reliability, impact of human error (eg failsafe modes), health and safety
and required staffing levels
(3) environmental factors, including but not limited to production of airborne
and waterborne pollutants, use and management of environmentally
harmful substances.

PERSONNEL REQUIREMENTS (COMPETENCY AND CAPACITY)
1.26 The Personnel general requirement is defined as:

Activities necessary to achieve the ACCO Functional Objectives are performed
effectively by appropriate numbers of personnel who are suitably qualified and
experienced.

OUTCOME
1.27 Activities required to achieve each ACCO Functional Objective in the context
of the OSI are performed effectively.
1.28 People performing these activities are Suitably Qualified and Experienced
Personnel (SQEP).
1.29 There are appropriate numbers of SQEP to conduct these activities, given
the expected tempo and duration of the mission system tasks, and the potential
impact of sickness, injury or loss of personnel.

RATIONALE
1.30 Almost all mission systems require input from, and interaction with,
personnel.
1.31 Specific skills and expertise are required to perform the activities that deliver
the ACCO Functional Objectives.
1.32 Personnel obtain specific skills and expertise through a combination of:
a. training and education, leading to recognised qualifications
b. experience in the specific activities and tasks, including performance
feedback to ensure the experience that is gained is correct
c. experience in similar related fields.
1.33 Once gained, the skills and expertise are kept current through ongoing development to maintain currency with evolving techniques, methodologies and technologies.

1.34 Activities that deliver each Functional Objective therefore need to be performed by people who have qualifications and experience that are current, relevant to the task at hand and at a level that enables the activities to be successfully completed to the required standard - Suitability Qualified and Experienced Personnel (SQEP).

1.35 In order to maximise the likelihood of achieving the defined task on an ongoing basis, an appropriate number of SQEP are required. While a given task or activity may be performed by fewer personnel in the short term, this is likely to compromise the ability to sustain the activities in the longer term. Therefore, appropriate numbers of SQEP are required in order to sustain activities and tasks for the intended tempo and duration. DSwMS recognises that circumstances may arise where allocation of SQEP to activities and tasks is not ideal, but may be necessary in the short term. However, under DSwMS this should be an exception and is not considered acceptable as a standard practice.

1.36 From the perspective of the mission system as a whole, consideration also needs to be given to the extent to which individual SQEP are spread across multiple activities, so as to avoid single points of failure and resource contention between multiple concurrent activities.

PERSONNEL ELEMENT REQUIREMENTS

1.37 The duty holder must demonstrate that:

a. The requirements for qualifications and experience necessary to perform the activities and tasks as they relate to the ACCO Functional Objectives in the context of the OSI are identified, established, maintained and documented.

b. Personnel conducting activities and tasks as they relate to the ACCO Functional Objectives are suitably qualified and experienced. Suitability requires that the personnel have qualifications and experience that are:
 (1) current
 (2) relevant
 (3) at a level that enables the task to be successfully completed to the required standard(s).

c. There are appropriate numbers of suitably qualified and experienced people to conduct the activities that deliver the ACCO Functional Objectives, given the expected tempo and duration of the mission system tasks, and the potential impact of sickness, injury or loss of personnel.

d. Sufficient consideration is given to the use of on the job training (OJT) in developing suitable skills, qualifications and experience; and allowances made for appropriate numbers of SQEP to continue the normal, essential and emergency functions of the maritime mission system whilst training requirements are catered for.

e. Appropriateness of qualifications and experience is verified through performance review.
f. Personnel performing the necessary activities and tasks are appropriately authorised to do so.

1.38 Where the duty holder cannot demonstrate the above performance requirements in the case of a discrete activity or task, or in the case of any excursion of the mission system outside its OSI, then they must demonstrate that hazards and risks are deliberately managed through an approved risk management methodology (established under GMCO 1.3).

COMMAND AND CONTROL REQUIREMENTS

1.39 The Command and Control element objective is defined as:

Systems of command and control that enable the integration, coordination and control of physical and personnel elements to achieve the ACCO Functional Objectives are established, monitored and maintained.

OUTCOME

1.40 Decision rights (including authorities and delegations) as applicable to achieving activities and tasks are understood and executed appropriately.

1.41 Decisions are made by the authorised persons in a timely manner.

1.42 The decisions are executed effectively in accordance with the intent.

RATIONALE

1.43 Maritime mission systems typically operate in complex, dynamic environments and therefore a mission system must respond and adapt in an appropriate timeframe to achieve the specified task. This requires an understanding of the operating environment and objectives, and the ability to make decisions, provide direction and enact those decisions.

1.44 Command and Control, therefore, are defined as follows:

a. Command is the exercise of authority, decision making and communicating intent.

b. Control is mechanism by which the intent is enacted.

1.45 The exercise of command requires a clear understanding of accountabilities, and specifically decision rights within those accountabilities. Where accountabilities and decision rights are not understood, achieving the Seaworthiness Outcome is compromised. The principles of Command and Control apply at multiple levels from the strategic, through operational to routine tasks.

1.46 This performance requirement applies to those levels of Command and Control inherent to the mission system and that are required to integrate and apply the constituent elements of the mission system to the task.

1.47 The intent is to ensure Command and Control is appropriate and effective as it relates to the mission system achieving the Seaworthiness Outcome.

1.48 Within a mission system Command and Control manifests in two forms, Command and Control for the purpose of enabling and maintaining the basic functioning of the mission system, versus Command and Control to use the mission system as a whole to achieve the defined task and the operational effect (eg use the mission system to conduct HADR operations).
COMMAND AND CONTROL ELEMENT REQUIREMENTS

1.49 The duty holder must demonstrate that in relation to the activities required to achieve each Functional Objective in the context of the OSI that:

a. The decision rights (including authorities and delegations) as applicable to achieving activities and tasks are defined, documented and understood. This means that

 (1) individuals are Suitably Qualified and Experienced (SQEP) to hold their decision rights and accountabilities

 (2) individuals understand the limits of their decision rights and know when to hand off and to where.

b. Decisions are made at the right level, by the authorised persons in a timely manner. This means that:

 (1) the authorised persons understand the functions and interdependencies of the physical and personnel elements of the mission system and its supporting systems, and hence understand the implications of their decisions (including potential 2nd and 3rd order implications, and short and long term implications) on the Seaworthiness Outcome

 (2) the authorised persons know what information is required to make a given decision

 (3) information necessary to make informed decisions is available at the right time and in a form that supports effective decision making.

c. The decisions are executed effectively in accordance with the intent. This means that:

 (1) decisions are communicated and direction given in a precise and timely way that enables the accountable SQEP to execute them effectively

 (2) there are sufficient resources to ensure that this communication and direction is given, taking into account any need for redundancy or alternative channels

 (3) implementation of decisions is monitored and recorded for completeness and effectiveness, and feedback is provided to both decision-makers and those executing the decisions.

1.50 Command and Control systems must give consideration to the cognitive abilities and limits of personnel to process information relating to complex activities and environments. Examples include:

a. littoral operations involving concurrent operations, troop movements and deployed assets, where control may need to devolved in a planned, transparent and timely manner

b. use of decision support systems in highly complex multi-threat situations.

1.51 Where automated decision making and control mechanisms are used, specific consideration must be given to the authorisation of automated systems and the handover and intervention points between manual and automatic control.

SECURITY REQUIREMENTS

1.52 The Security objective is defined as:
Appropriate security provisions to address vulnerabilities that may prevent achievement of ACCO Functional Objectives are established, monitored and maintained.

OUTCOME
1.53 Security-related vulnerabilities are addressed in proportion to their consequences to ACCO Functional Objectives.

RATIONALE
1.54 Each ACCO Functional Objective comprises a series of requirements that are considered in the context of the constituent element requirements described above. These requirements will have associated vulnerabilities (points of weakness) that may be exploited intentionally or unintentionally and hence pose a risk to achievement of the Functional Objective. Security refers to the identification, management and control of these vulnerabilities and is therefore, a critical component of an effective system of control.

SECURITY ELEMENT REQUIREMENTS
1.55 Vulnerabilities may be exploited through, for example, attack, theft, infiltration or compromise, harassment and so on, resulting in an inability to achieve the Functional Objective and hence the Seaworthiness Outcome.

1.56 Therefore, vulnerabilities must be identified, assessed and addressed in the context of each Functional Objective and in the context of the constituent elements.

1.57 Given the growing interconnectedness and interdependencies between physical and information systems, new and novel vulnerabilities are arising. These must be considered across all ACCOs. For example, a propulsion system interfaced with a control and monitoring system, which is also connected to an external communication system, may allow a cyber intrusion that results in enemy control of the propulsion system. Similarly digital navigation information may be maliciously altered to cause the grounding of a mission system.

1.58 Specific security considerations are included in ACCO Functional Objectives as required.

1.59 Consideration must also be given to prescribed compliance requirements relevant to security. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

IMPLEMENTATION MATURITY REQUIREMENTS
1.60 The Implementation Maturity objective is defined as:

Systems of control required for each Functional Objective are implemented to a level of maturity that is appropriate and effective for the mission system, given its phase in the Capability Life Cycle (CLC).

OUTCOME
1.61 Systems of control are implemented to the level necessary for the phase of the CLC that the mission system is in.
1.62 Systems of control are progressively implemented from as early as practicable in the mission system’s CLC.

RATIONALE

1.63 The ACCO performance requirements take a life cycle view of the systems of control themselves, within the broader context of the mission system lifecycle overall.

1.64 In most cases there will be a degree of alignment between the control and mission system life cycles. Therefore, there are requirements for the systems of control to be implemented to certain maturity levels at each phase of the mission system life cycle, or in some cases at specified milestones. For example fire detection and fighting systems may need to be fully functional at a specific mission system construction milestone.

1.65 In addition, giving consideration to the systems of control early in the mission system life cycle enables better control solutions to be developed and integrated into the mission system and at lower cost than if they are retrofitted as an afterthought.

1.66 The implementation requirements therefore aim to ensure that the implementation of systems of control starts as early as practicable in the mission system life cycle and then progresses in line with the needs of the mission system as it moves through its CLC.

IMPLEMENTATION MATURITY ELEMENT REQUIREMENTS

1.67 Capability Managers must ensure that each system of control achieves maturity levels appropriate to the functional need for that system of control in the mission system CLC.

1.68 Control maturity levels must address the following considerations:
 a. context for effective and efficient systems of control has been established
 b. systems of control are designed to be Fit for Purpose
 c. systems of control are realised as designed
 d. effectiveness of systems of control is enabled through life
 e. systems of control are operated and maintained as designed through life
 f. efficiency and effectiveness of systems of control is continually improved.

1.69 The required levels of maturity for each of these considerations at each phase in the CLC are set out in the Guidance.

GUIDANCE

1.70 Further guidance for this Functional Objective is available at the DSwMS website.¹

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
PART 1: ACCO GOAL 1
CONTENTS

Chapter 1 1–1
Activity and condition based compliance obligation 1.1 - structural integrity 1–1
 Functional Objective 1–1
 Outcome 1–1
 Rationale 1–1
 Requirements of Functional Objective 1.1 1–2
 Guidance 1–4
Chapter 2 2–1
Activity and condition based compliance obligation 1.2 - buoyancy, trim and stability, and seakeeping 2–1
 Functional Objective 2–1
 Outcome 2–1
 Rationale 2–1
 Requirements of Functional Objective 1.2 2–2
 Guidance 2–3
Chapter 3 3–1
Activity and condition based compliance obligation 1.3 - electrical power 3–1
 Functional Objective 3–1
 Outcome 3–1
 Rationale 3–1
 Requirements of Functional Objective 1.3 3–2
 Guidance 3–3
Chapter 4 4–1
Activity and condition based compliance obligation 1.4 - Illumination and Lighting 4–1
 Functional Objective 4–1
 Outcome 4–1
 Rationale 4–1
 Requirements of Functional Objective 1.4 4–1
 Guidance 4–3
Chapter 5 5–1
Activity and condition based compliance obligation 1.5 - auxiliary systems and hotel services 5–1
 Functional Objective 5–1
 Outcome 5–1
 Rationale 5–1
 Requirements of Functional Objective 1.5 5–2
 Guidance 5–5
Chapter 6 6–1
Activity and condition based compliance obligation 1.6 - replenishment and external services 6–1
 Functional Objective 6–1
 Outcome 6–1
Rationale 6–1
Requirements of Functional Objective 1.6 6–2
Guidance 6–4

Chapter 7 7–1
Activity and condition based compliance Obligation 1.7 - survivability and preservation of life 7–1
 Functional Objective 7–1
 Outcome 7–1
 Rationale 7–1
 Requirements of Functional Objective 1.7 7–3
 Guidance 7–5

Chapter 8 8–1
Activity and condition based compliance obligation 1.8 - communications 8–1
 Functional Objective 8–1
 Outcome 8–1
 Rationale 8–1
 Requirements of Functional Objective 1.8 8–3
 Guidance 8–5

Chapter 9 9–1
Activity and condition based compliance obligation 1.9 - integrated control systems 9–1
 Functional Objective 9–1
 Outcome 9–1
 Rationale 9–1
 Requirements of Functional Objective 1.9 9–2
 Guidance 9–5
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 1

ACTIVITY AND CONDITION BASED COMPLIANCE OBLIGATION 1.1 - STRUCTURAL INTEGRITY

FUNCTIONAL OBJECTIVE

1.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.1 is defined as:

Appropriate structural integrity of physical elements including hull, structures and fittings is established, monitored and maintained

OUTCOME

1.2 The structural elements of a maritime mission system are able to provide the physical form that withstands foreseeable loads and impacts; maintains a boundary with the external environment; and contains and protects an internal environment suitable for personnel and systems.

RATIONALE

1.3 Structural integrity is a performance characteristic of physical elements and systems, which requires the establishment and maintenance of the following conditions:

a. structural strength
b. boundary integrity
c. durability
d. ergonomics.

1.4 Of all physical attributes, structural integrity is fundamental to enable a mission system to exist and endure. Structural integrity is achieved through:

a. the design and the margins incorporated into that design
b. the build quality
c. the in-service operation and maintenance practices applied over the design life of the mission system.

1.5 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. the impaired performance of physical elements and systems
b. loss of a platform and associated consequences to people and the environment as a result of the catastrophic failure of the structure
c. the reduction of the service life of a mission system
d. the loss of availability associated with emergent structural maintenance.

1.6 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. environmental contamination and/or harm to personnel through use of structural treatments (eg antifouling and anticorrosive coatings)
b. safety related consequences associated with inspections, survey and maintenance (eg working from heights, confined space entry)

c. limitations on future configuration changes, caused by optimising structural integrity around the initial design (eg high-speed craft optimised to be lightweight are then unable to be fitted with additional equipment for a change of role).

1.7 A common cause of the above consequences is usage outside of, or support not in accordance with the OSI.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.1

1.8 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at [Volume 3, Part 0](#).

1.9 Structural Integrity is linked to most other ACCOs, but specifically requires consideration in conjunction with:

a. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
b. ACCO 1.6 – Replenishment and External Services
c. ACCO 1.7 – Survivability and Preservation of Life
d. ACCO 2.1 – Propulsion and Manoeuvrability
e. ACCO 2.3 – Berthing, Mooring, Anchoring and Towing
f. ACCO 3.4 – Carriage and Handling of Loads
g. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods
h. ACCO 3.7 – Embarked and Deployable Sub-systems.

1.10 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

1.11 **Structural Strength** – the ability to withstand static and dynamic loads imposed on the whole structure and on localised areas. Consideration must be given to all loads that may be foreseen, including, but not limited to those which may be imparted through:

a. the structure and structural elements of the mission system, to ensure that the structure itself does not present a hazard (eg permanent or temporary distortion through inherent structural mass)

b. loads in operation associated with, but not limited to:
 1. variation in speed, turning, pitching, rolling, yawing and slamming
 2. variable loading conditions associated with fuels, ordnance, outfit and ballast
 3. berthing, mooring, anchoring and towing, docking, tug operations as covered under ACCO 2.3
c. external environmental conditions including:
 (1) wind
 (2) wave height and period
 (3) temperature (air and sea)
 (4) water pressure due to depth
 (5) water density
d. carriage and handling of cargoes and employment of embarked and deployable sub-systems including systems ‘fitted for but not with’
e. equipment and systems including any related considerations such as foundations, point loads, pressure and vibration.

1.12 **Boundary Integrity** – the external barriers and internal segregation of the mission system to obtain structural strength and improve stability and survivability characteristics. Boundary integrity considerations must include, but are not limited to the prevention of ingress or egress of:

a. water
b. weather
c. substances including fuels, lubricants, chemicals and gases
d. thermal energy as a result of differences in temperatures across the boundaries for example, as a result of incident sunlight, water temperature and internal air temperature.

1.13 **Durability** – the ability to withstand degradation and maintain functional performance when subject to corrosion, erosion, wear, fatigue, heat or impact damage, considered in the context of the OSI. Specific considerations must include, but are not limited to:

a. appropriate preservation of structures through material selection (including material compatibility), coatings, treatments and active/passive cathodic protection measures
b. design margins and redundancy (eg margins for wastage, double hulling and internal bulkheads for impact durability)
c. the alignment of survey, maintenance, repair and replacement regimes.

1.14 **Ergonomics** – designing and arranging systems and equipment so that they interact most effectively and safely with people. In terms of structural integrity, there is a risk that in applying the considerations above, the mission system compromises the ability to accommodate and protect personnel and enable human activities such as operations, inspections and maintenance. Therefore, specific consideration must be given to:

a. protecting personnel and enabling essential safety functions in the event of all foreseeable emergencies and accidents at least until the persons have reached a place of safety or the threat has receded (in conjunction with the requirements of ACCO 1.7 – Survivability and Preservation of Life)
b. permit embarked persons to carry out their duties effectively and safely including habitability aspects
c. provide means of access to undertake maintenance activity such as survey servicing and repair, equipment removal and replacement, etc.

1.15 **Operation and Support** – managing the impact on this Functional Objective based on the way the mission system is operated and supported. Excursions outside of the OSI or tasks that impose heavy duty cycles (e.g., repeated loading and unloading of heavy equipment such as vehicles) have the potential to reduce mission system performance, availability and life. Therefore, consideration must be given to the establishment of systems of control to:

a. articulate the operating conditions and limitations to operators
b. align survey, maintenance, repair and replacement regimes to actual usage
c. assure usage within the OSI
d. identify and act where excursion outside the OSI occurs
e. maintain alignment between the OSI and actual or required usage in accordance with GMCO 3.3.

1.16 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

1.17 Further guidance for this Functional Objective is available at the DSwMS website.¹

CHAPTER 2

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.2 - BUOYANCY, TRIM AND STABILITY, AND SEAKEEPING

FUNCTIONAL OBJECTIVE

2.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.2 is defined as:

Buoyancy, trim and stability, and seakeeping are established, monitored and maintained

OUTCOME

2.2 The maritime mission system is able to obtain and maintain, in all foreseeable operating conditions:

a. The specified vertical position in or on the water column.

b. An upright orientation.

c. Motions tolerable to the operation of equipment, systems and personnel in both immediate and long term use. Motions include those intended by the mission system, for example through accelerations and turning; and those caused through the external environment for example wind, wave and current.

RATIONALE

2.3 Mission systems operate on the water surface or in the water column (can operate in three dimensions, hence operate with six degrees of freedom). Buoyancy, trim and stability, and seakeeping are fundamental characteristics of a mission system that are essential to locate and orientate the system in or on the water column and respond appropriately in the operating environment. In addition to immediate operating and safety effects, poor management of controls relating to achieving buoyancy, trim and stability, and seakeeping may impact operational effect due to, for example, loss of port access through failure to comply with environmental requirements related to ballast water.

2.4 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. uncontrolled ingress of water due to insufficient freeboard, poor load management, the environment (including heavy weather), or credible disturbances including damage

b. operational limitations imposed through embarked and deployable sub-systems.

2.5 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. harmful pest translocation as a result of ballasting activities in the control of stability
b. emergency ingress / egress may be impaired due to increased subdivision of the hull in order to maintain stability and buoyancy in the event of damage
c. operational range may be limited where fuel is used as a component of the ballast system
d. limitations on future configuration changes, caused by optimising buoyancy, trim and stability, and seakeeping around the initial design (eg as a result of configuration changes over the life of the vessel, weight distributions change affecting desired seakeeping characteristics).

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.2

2.6 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

2.7 Buoyancy, Trim, Stability and Seakeeping is linked to other ACCOs, but specifically requires consideration in conjunction with:
 a. ACCO 1.1 – Structural Integrity
 b. ACCO 1.6 – Replenishment and External Services
 c. ACCO 1.7 – Survivability and Preservation of Life
 d. ACCO 1.9 – Integrated Control Systems
 e. ACCO 2.1 – Propulsion and Manoeuvrability
 f. ACCO 3.4 – Carriage and Handling of Loads
 g. ACCO 3.6 – Carriage of Non-crew Personnel
 h. ACCO 3.7 – Embarked and Deployable Sub-systems.

2.8 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

2.9 **Buoyancy** – a fundamental characteristic for a mission system to obtain and maintain its specified vertical position in or on the water column. The buoyancy characteristic of a mission system must be such that it can obtain and maintain vertical position to meet OSI requirements and have or produce sufficient reserves of buoyancy in all foreseeable circumstances, including intact and damage conditions, in the environment in which the mission system is to operate.

2.10 **Trim and Stability** – fundamental characteristics of a mission system to obtain and maintain the intended orientation (across all applicable degrees of freedom). A mission system must provide sufficient resistance to perturbation from the intended orientation, in order to maintain operation of systems and to prevent capsize, as well as adequate restoring energy to return upright once disturbances are removed.

2.11 **Seakeeping** – a fundamental characteristic of the mission system with respect to the motions it experiences in performing its defined taskings across the range of foreseeable operating environments and conditions. A mission system’s
seakeeping characteristics must be such that motions remain tolerable to, and do not place undue limits on the operation of equipment, systems and personnel. This includes the requirement to maintain ship handling in alignment with the seakeeping characteristics of the mission system, to avoid excessive forces generated through, for example, slamming, broaching etc.

2.12 Monitoring and maintenance of margins of stability must be actively managed across the Capability Life Cycle. Thorough assessment of the impact to buoyancy, trim and stability, and seakeeping is required when making capability or configuration changes.

2.13 Specific consideration must be given to the provision of decision support tools (eg trim and stability handbooks, loading calculators etc) to assist ships’ complement to monitor and manage trim and stability of the mission system during normal operation (including loading and unloading) and in damaged condition.

2.14 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

2.15 Further guidance for this Functional Objective is available at the DSwMS website.²

CHAPTER 3

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.3 - ELECTRICAL POWER

FUNCTIONAL OBJECTIVE

3.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.3 is defined as:

Appropriate electrical generation, storage and distribution to power the required functions and services is established, monitored and maintained

OUTCOME

3.2 Sufficient and suitable electrical power is supplied, in all foreseeable operating conditions, to:

a. functions (eg propulsion, detecting etc) and services (eg hotel services) required to perform defined taskings
b. essential safety systems during degraded or emergency conditions.

RATIONALE

3.3 All maritime mission systems require power of various types for the purposes of both internal functions of the mission system and the generation of energy for movement. Electrical power, as distinct from other forms of power, is often associated with well known hazards and the need for specific management. This ACCO therefore, deals specifically with the management of hazards and risks associated with electrical power. Other types of power are dealt with in other relevant ACCOs, for example, hydraulic power is dealt with under ACCO 1.5 – Auxiliary Services and Hotel Services. Similarly, propulsive power is dealt with under ACCO 2.1 – Propulsion and Manoeuvrability.

3.4 Electrical power is generated from energy sources such as fuel, wind, chemicals or sunlight, and is distributed and converted where required to support demand. Electrical power sources also include storage devices such as batteries and capacitors.

3.5 This ACCO applies whether the electrical power source is dedicated to this function or provided as a secondary function, such as propulsion systems that are also used to generate electricity. Furthermore, electrical power may be provided from external sources such as shore power.

3.6 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. inability to achieve the required operational effect due to critical functions not being available, such as loss of power to detectors resulting in a loss of situational awareness
b. harm to personnel due to loss of hotel services, such as heating, ventilation and cooling
c. harm to the environment due to loss of auxiliary functions such as sewage treatment.
3.7 Examples of the types of consequences associated with achieving this Functional Objective can include:
 a. vulnerability due to the detection of electro-magnetic signature
 b. harm to personnel through electrical shocks
 c. harm to the environment from generation of substances such as hydrogen, chlorine and ozone created to treat (or as a by-product) grey and black water.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.3

3.8 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

3.9 Electrical power is linked to other ACCOs but specifically requires consideration in conjunction with:
 a. ACCO 1.4 – Illumination and Lighting
 b. ACCO 1.5 – Auxiliary Systems and Hotel Services
 c. ACCO 1.6 – Replenishment and External Services
 d. ACCO 1.8 – Communications
 e. ACCO 1.9 – Integrated Control Systems
 f. ACCO 2.1 – Propulsion and Manoeuvrability
 g. ACCO 3.2 – Detectors
 h. ACCO 3.3 – Effectors.

3.10 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

3.11 **System Durability** – the ability of the system to maintain functional performance in the context of the OSI and to withstand degradation. Consideration must be given to durability aspects of electrical power systems, including but not limited to:
 a. Limiting the effects of mutual interference, failure or damage of power sources, distribution networks and the functions or services requiring power through suitable redundancy, isolation and separation of power sources and distribution networks.
 b. Suitable protection measures to protect personnel and equipment are fitted to electrical sources, storage devices and distribution systems when operating in normal, degraded and maintenance states. These protection measures (including those associated with damage control functions) must not in themselves pose a danger to personnel, the environment or any other function or service.
 c. Functionality to regain sufficient electrical power to restore essential functions from a dead ship condition.
d. Suitable arrangements for the installation, storage, charging (eg impact of charge/discharge rates and cycles), power monitoring and management, use, maintenance and disposal of electrical energy storage devices.

e. Transitional power supplies where no interruption or disruption to the electrical supply of operational and essential safety systems is required.

3.12 Consideration must also be given to the characteristics of the materials used in electrical power systems, including but not limited to:

a. Off-gassing, venting and leakage associated with electrical systems (eg associated with batteries, cabling etc) in normal operating and in degraded or damaged (eg fire) conditions.

b. Combustion and explosion characteristics of materials used in power sources (eg lithium ion or hydrogen/oxygen fuel cells etc).

c. Electrical potential incompatibility of materials resulting, for example in galvanic corrosion. Such consideration may include the need for earthing, bonding and cathodic protection measures.

3.13 In addition to the unifying requirements of Volume 3, Part 0, specific attention is to be given to the provision of sufficient and suitably qualified and certified Electrical System Operators and Maintainers during the in-service phase of a mission system. These personnel are to be afforded sufficient opportunity to develop and maintain the experience necessary to conduct operations and maintenance on electrical power systems.

3.14 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

3.15 Further guidance for this Functional Objective is available at the DSwMS website. ³

CHAPTER 4

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.4 - ILLUMINATION AND LIGHTING

FUNCTIONAL OBJECTIVE

4.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.4 is defined as:

Appropriate illumination and lighting to support operation of the mission system is established, monitored and maintained

OUTCOME

4.2 The mission system is provided with sufficient illumination levels to perform its defined taskings in all foreseeable operating conditions.

RATIONALE

4.3 Maritime mission systems require illumination for operational and habitability purposes in both normal and emergency conditions. In addition, lighting configuration may be used in achieving a specified operational effect such as through use of deceptive lighting, anti-piracy measures or in support of deployable sub-systems (eg aviation).

4.4 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:
 a. collision through loss of, or inadequate navigation lighting
 b. health and safety consequences due to inadequate workplace lighting
 c. harm to the environment through failure to detect hazardous conditions eg suitable bilge lighting to detect pipe work leaks.

4.5 Examples of the types of consequences associated with achieving this Functional Objective can include:
 a. Increased detectability of the mission system through navigation and upper deck operational lighting.
 b. Harm to personnel as a result of lighting optimised for one purpose, but which is incompatible with another. For example, night vision for a bridge watchkeeper may be impaired through visual landing aids leading to a collision.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.4

4.6 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

4.7 Illumination and Lighting is linked to other ACCOs but specifically requires consideration in conjunction with:
 a. ACCO 1.7 – Survivability and Preservation of Life
 b. ACCO 1.8 – Communications
c. ACCO 1.9 – Integrated Control Systems

d. ACCO 2.2 – Situational Awareness

e. ACCO 3.7 – Embarked and Deployable Sub-systems.

4.8 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

4.9 Consideration must be given to the general characteristics of mission system illumination and lighting including, but not limited to:

a. illumination intensity regarding:
 (1) configurability
 (2) adjustability (dimming)
 (3) hazards to personnel such as through high intensity lighting

b. illumination quality including aspects such as reflection, glare, flicker and shadowing

c. illumination colour including its effects on visibility, distinguishability, night vision and so on

d. illumination detectability and dark adaptation arrangements

e. the ability of the illumination system to withstand degradation and maintain functional performance (ie the system's durability), such as:
 (1) limiting the effects of failure or damage of lighting networks through suitable redundancy, isolation and separation of lighting networks
 (2) having fittings and enclosures that are suitable for the intended operating environment (eg weather-proof, explosion-proof, shock and vibration, etc)

f. system compatibility such as:
 (1) between lighting systems, for example red lighting and instrumentation lighting
 (2) between lighting and imaging systems, for example visual landing aids and Night Vision Imaging Systems

g. heat output including aspects such as loading and hazards to personnel and equipment

h. the hazards and risks associated with power sources, wiring, fittings and switches such as electrocution or unintended ignition source.

4.10 Specific consideration must be given to illumination and lighting with respect to:

a. Normal workplace and operational requirements. Lighting must be provided to those parts of the mission system normally accessible to, and used by
personnel to enable the conduct of their duties and for the purposes of habitability.

b. Contingency and emergency escape lighting requirements.

c. Visual aids for the purpose of:

 (1) Visual identification and location (knowing what an object is, where it is and/or what task it is performing). For example, illuminating pennant number, or configuration of navigation lighting or task lighting such as for mine-hunting purposes.

 (2) Assisting the deployment and recovery of sub-systems such as aircraft and landing craft, for example visual landing aids.

4.11 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

4.12 Further guidance for this Functional Objective is available at the DSwMS website.

THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 5

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.5 - AUXILIARY SYSTEMS AND HOTEL SERVICES

FUNCTIONAL OBJECTIVE

5.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.5 is defined as:

Appropriate auxiliary systems and hotel services to support mission systems functions and habitability requirements are established, monitored and maintained.

OUTCOME

5.2 Appropriate auxiliary and hotel services are provided in all foreseeable operating conditions to:

a. support or provide mission system functions
b. support or provide subsystem functions
c. eliminate or minimise harm to personnel and/or the environment
d. provide necessary habitability requirements.

RATIONALE

5.3 Auxiliary systems are defined as those systems that are supplementary to, or indirectly support, primary mission system functions; while hotel services support habitability. A given system may provide both an auxiliary service to other systems as well as hotel services, for example, a fresh water system.

5.4 Some auxiliary systems are intended as a control to minimise harm to personnel and/or the environment, for example, gas detection systems, oily water separators and sewage treatment plants.

5.5 Auxiliary systems and hotel services may include, but are not limited to:

a. fuel and lubricant management systems to support propulsion and power generation
b. heating, ventilation and air conditioning (HVAC) systems supporting both equipment and habitability
c. fresh water generation and distribution
d. food services, accommodation, sanitation, health and recreation systems.

5.6 Some auxiliary systems are sufficiently aligned to a specific Functional Objective that they are addressed through the specific ACCO for that Functional Objective. For example, the possible need for ballast water exchange is highlighted under ACCO 1.2 – Buoyancy, Trim and Stability and Seakeeping. Therefore the need for an auxiliary system such as a ballast water treatment plant would arise in consideration of managing the hazards and risks associated with ballast water exchange. Similarly, systems associated with survivability and preservation of life are
addressed under ACCO 1.8 – Survivability and Preservation of Life. Therefore, this ACCO covers all those auxiliary systems and hotel services not covered elsewhere.

5.7 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. failure to achieve the operational effect due to inadequately or incorrectly sized auxiliary systems eg HVAC systems not having sufficient capacity to cater for the full range of operational conditions
b. harm to personnel through heat stress due to a lack of appropriate HVAC systems
c. harm to the environment due to an inability to manage waste.

5.8 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. increased mission system vulnerability due to complex systems interdependency
b. harm to personnel through activation of relief valves
c. harm to the environment due to chemical treatments used to support hotel services such as sanitation.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.5

5.9 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

5.10 Auxiliary Systems and Hotel Services is linked to all other ACCOs, but specifically requires consideration in conjunction with:

a. ACCO 1.3 – Electrical Power
b. ACCO 1.6 – Replenishment and External Services
c. ACCO 1.7 – Survivability and Preservation of Life
d. ACCO 1.8 – Communications
e. ACCO 1.9 – Integrated Control Systems
f. ACCO 3.2 – Detectors
g. ACCO 3.3 – Effectors
h. ACCO 3.4 – Carriage and Handling of Loads
i. ACCO 3.6 – Carriage of Non-crew Personnel
j. ACCO 3.7 – Embarked and Deployable Sub-systems.

5.11 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

5.12 Integration – the ability of an auxiliary system or hotel service to interface and operate with other subsystems, to a level which enables the mission system to
achieve the defined tasking. Consideration must be given to aspects of integration, including but not limited to:

a. Compatibility and suitability of interfaces and supporting services (interoperability) such as:
 (1) Fixings and couplings.
 (2) Information transfer and management.
 (3) Any impairment imposed by or on the auxiliary system or hotel service through normal, essential and emergency functions of the mission system. For example, damage control states may require isolation of certain auxiliary systems, or certain auxiliary systems such as oily water separators may not be able to be used in proximity to coastlines.

b. Capacity of the maritime mission system to support and sustain the auxiliary system or hotel service in terms of:
 (1) specialist personnel
 (2) space and weight
 (3) structural suitability
 (4) the cumulative and concurrent requirements or impacts of multiple auxiliary systems eg electrical power load.

5.13 Prevention of Contamination – Auxiliary systems and hotel services are often required to take in, store, and distribute substances including fuels, lubricants, water, air and other gases. All of these systems must consider the levels and kinds of contamination that may impact the intended function. Consideration must be given to:

a. material suitability, for example avoiding the use of tank paint schemes or materials that may leach contaminants into potable water

b. avoiding material degradation, for example rusting pipe work introducing particulate contamination

c. preventing cross contamination that may occur through:
 (1) system interfaces for example, leaking oil cooler resulting in saltwater contamination of lubrication oil
 (2) system modes of operation and potential interactions between systems, for example unintentionally opening a compressed air test system to the saltwater fire main
 (3) inappropriate system separation for example toxic gases (exhaust fumes, H₂S) drawn into ventilation systems

d. preventing external contamination for example, taking on board contaminated fuels, or debris left in pipework during construction or repair.

5.14 Control of Hazardous Substances and States – Auxiliary systems or hotel services may contain substances which are inherently hazardous to people or other systems (flammable, corrosive toxic, etc), and/or are in a hazardous state (high pressure, temperature, velocity etc). Consideration must be given to:

a. Containment measures to confine the substances to the system (including storage tanks, pressure vessels, piping, ducting etc). The design,
construction and maintenance of these containment measures must take into account:

(1) The state that the substance must be maintained in (liquid, gas, temperature etc).

(2) Potential failure modes and failure points in the context of the specific use of the auxiliary system or hotel service. For example, the use of flange guarding or shields to prevent fuel spray.

b. Movement and transfer of substances within or between systems. Systems of control including management systems and protocols must be designed, constructed and maintained to prevent:

(1) transfer of substances to unintended locations, for example discharge of sewage, contaminated oil into a clean oil storage tank etc

(2) transfer of incorrect volumes, weights or pressures; for example overflow of storage tanks, over pressurisation of a gearbox, unintended effects on trim and stability.

c. Treatment and disposal of hazardous substances, for example grey and black water, oily water, used lubricants and chemicals etc.

5.15 **System Durability** – the ability of the system to withstand degradation and maintain functional performance in the context of the operating and support intent (OSI). Considerations must include, but are not limited to:

a. Limiting the effects of operation, failure or damage of auxiliary systems and hotel services through suitable redundancy, isolation and separation.

b. Suitable protection measures exist to protect equipment, personnel and the environment with respect to auxiliary systems and hotel services when:

(1) operating in normal modes and degraded states

(2) undertaking maintenance

(3) operating near personnel

(4) operating in or near sensitive environmental areas.

c. Ensuring that protection measures in and of themselves do not pose a danger to operations, personnel, the environment. For example, ensuring pressure relief valves do not vent near personnel.

5.16 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).
5.17 Further guidance for this Functional Objective is available at the DSwMS website.\footnote{\url{http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx}}
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 6

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.6 - REPLENISHMENT AND EXTERNAL SERVICES

FUNCTIONAL OBJECTIVE

6.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.6 is defined as:

Appropriate arrangements for replenishment and for interfacing with external systems are established, monitored and maintained

OUTCOME

6.2 To provide the mission system with the ability to interface with external systems in order to replenish or otherwise support the mission system or other mission systems as required in accordance with the operating and support intent (OSI).

RATIONALE

6.3 Most maritime mission systems need to interface with external systems at sea and ashore for the purposes of replenishment or provision of other services to or from the mission system. These interfaces can include power, water, sewage, communications as well as the capability to transfer people, cargo and equipment.

6.4 The activities associated with this ACCO may include:

a. Connecting – the act of coupling required components to interface points. In the context of this ACCO, components may include couplings, connectors, conduits (hoses, pipes etc), cables (electrical wiring, gun lines, wire ropes etc), gangways, brows and so on.

b. Transferring – the act of moving physical objects, fluids, gases, people, power or information between the mission system and the external system through the connecting arrangement.

c. Disconnecting – the act of decoupling the mission system from the external system and making the systems safe.

6.5 The process of manoeuvring a mission system to perform these activities is covered under ACCO 2.1 – Propulsion and Manoeuvrability (eg joining or separating for replenishment at sea; arriving or departing with respect to berthing). The process of securing a mission system itself is covered under ACCO 2.3 – Berthing, Mooring, Anchoring and Towing.

6.6 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. loss of capability due to the inability to properly replenish the mission system
b. harm to personnel caused by connecting or disconnecting activities
c. damage to the environment through spillage caused by connecting or disconnecting activities.
6.7 Examples of the types of consequences associated with achieving this
Functional Objective can include:

a. loss of a mission system due to the inability to disconnect in an emergency
 situation, for example cables preventing closure of open hatches in
 submarines, or inability to separate mission systems in a timely manner
 during a replenishment at sea

b. harm to personnel through trip hazards from cables or hoses

c. harm to the environment through inadvertent transfer of pests via ship to
 shore connections.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.6

6.8 The requirements for this ACCO comprise the unique requirements
described below and the common, unifying requirements specified at Volume 3,
Part 0.

6.9 Replenishment and External Services is linked to other ACCOs but
specifically requires consideration in conjunction with:

a. ACCO 1.1 – Structural Integrity
b. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
c. ACCO 1.3 – Electrical Power
d. ACCO 2.1 – Propulsion and Manoeuvrability
e. ACCO 2.2 – Situational Awareness
f. ACCO 2.3 – Berthing, Mooring, Anchoring and Towing
g. ACCO 3.4 – Carriage and Handling of Loads
h. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods.

6.10 Consideration must be given to hazards and risks that may limit achievement
of this Functional Objective, or which may be realised through achievement of this
objective. Systems of control to address these hazards and risks should not in and of
themselves create further hazards or risks to this or other Functional Objectives. For
this Functional Objective, consideration must include but is not limited to the activities
and conditions described below.

6.11 Connecting – the act of coupling required components to interface points.
Interfaces are the specific points of interaction and connection between the mission
system and an external system such as the shore or another mission system.
Consideration must be given to:

a. compatibility and suitability of interfaces and services (interoperability)
 including, but not limited to:
 (1) fixings and couplings, gangways and brows, including requirements for
 interoperability with other co-operating units and in foreign ports
 (2) prevention of misconnection, for example between fuel and water, high
 and low pressure air, high voltage and low voltage power etc
 (3) information transfer and management
(4) security requirements including introduced vulnerabilities such as human access, cyber intrusion and so on

b. configuration of mission system services in readiness for connection to external services

c. separation of services from:
 (1) other services, for example separating water from electricity
 (2) personnel, for example keeping gangways clear of cabling
 (3) the impact of other activities, for example keeping service cables away from maintenance activities

d. dynamic interactions and loads caused by movement of the mission system relative to:
 (1) a static system, for example movement of the mission system relative to the wharf due to tidal movements
 (2) a dynamic system, for example during replenishment at sea where movement may occur across three dimensions and involve significant loads with high levels of human interaction.

6.12 Transferring – in the context of this ACCO, transferring is the act of moving physical objects, fluids, gases, people, power or information between the mission system and the external system through the connecting arrangement. The mission system must be able to achieve appropriate transfer in accordance with the OSI, therefore consideration must be given to:

a. Capacity. The mission system must have sufficient capacity to achieve the required transfer in terms of:
 (1) volumes (too much or too little)
 (2) rate (too fast or too slow).

b. Control. The mission system must be able to control the transfer process in terms of:
 (1) stopping, starting or isolating transfer as required, including in emergency situations
 (2) transfer rates
 (3) transfer conditions such as prevention of overpressure and overflow.

c. Quality. The mission system must ensure that:
 (1) correct product is being transferred (eg correct type of fuel is being taken onboard)
 (2) contamination is prevented (eg potable water is free of pathogens).

6.13 Transfer that occurs without a connection (eg a crane placing cargo onto a ship) is covered under ACCO 3.4 – Carriage and Handling of Loads and ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods.

6.14 Disconnecting – the act of decoupling required components to interface points. The mission system must have the ability to disconnect from interfaces in a timely and safe manner. Consideration must therefore be given to:
a. release mechanisms and protocols, such as interlocks and quick release systems
b. prevention and containment of leakage or spillage, such as non-return valves, hose purging or capping, spill kits etc
c. making safe and realigning systems for normal operation
d. emergency equipment and protocols, for example:
 (1) break away protocols for replenishment at sea
 (2) provision of tools such as axes to clear cabling or hoses from doorways and hatches.

6.15 **Risks Outside Direct Control** – Interfacing to external services exposes the mission system to vulnerabilities and risks associated with those services, which the mission system may have little control over. Therefore, the mission system must understand these risks and where necessary mitigate as appropriate. This may include a decision to not interface with an external service where the risks of doing so are unacceptable. Examples of where a mission system may have limited control include, but are not limited to:

a. soundness of connections and components (eg shore power cables)
b. continuity and quality of supply (eg electrical power surges, under voltage and currents, phase; water pressure; air pressure; data signal)
c. human access to ports, wharves and associated facilities
d. cyber intrusion
e. unsafe port facilities work practices
f. poor local environmental controls (eg lack of fuel spill booms, inadequate sewage treatment)
g. situations where the local requirements (such as local harbour rules) exceed those articulated through these regulations or Australian standards.

6.16 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

6.17 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).
CHAPTER 7

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.7 - SURVIVABILITY AND PRESERVATION
OF LIFE

FUNCTIONAL OBJECTIVE

7.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.7 is defined as:

Appropriate provisions for survivability and preservation of life to withstand credible threat scenarios are established, monitored and maintained.

OUTCOME

7.2 The primary outcome is to achieve a level of mission system survivability aligned with the OSI that optimises trade-offs between susceptibility, vulnerability and recoverability for credible hazards, be it those in the operating environment (eg collision or grounding) or in a threat environment (eg enemy action).

7.3 The secondary outcome is to preserve life for the purpose of supporting the primary outcome. Where this is no longer viable, then the outcome is simply to save life.

RATIONALE

7.4 All maritime mission systems operate in hazardous and threatening environments with associated risks. Systems of control are put in place to manage those risks in accordance with the Defence Seaworthiness Management System Manual (DSwMS) compliance obligations. Risks are realised when a loss of control occurs. Provisions must therefore be made for control to be regained and/or consequences minimised when these risks are realised.

7.5 Unique to the military context is that a mission system may be required to intentionally put itself in harm’s way and to continue to fulfil its mission when damaged or impaired. Considerations in a purely civilian maritime operating context may not be appropriate in a military operating environment. For example, in the case of a collision or grounding, abandoning ship may be the response in a civil maritime operating environment, whereas in the military context, the priority may be performing damage control in order to continue to deliver the operational effect. These different approaches then lead to different physical, personnel and command and control arrangements.

7.6 In both the military and civilian context the controls relate to:

a. Survivability:

 (1) Susceptibility – the probability of incurring damage; or a threat detecting, reaching and detonating on a mission system. A mission system may be detected in many ways and it is therefore necessary to minimise signatures in terms of underwater acoustics (ie. cavitation), magnetic, radar cross section, heat, airborne noise, visual and so on. This ACCO focuses on passive susceptibility measures. Active
susceptibility measures such as decoys are covered under ACCO 3.3 – Effectors.

(2) Vulnerability – a point or points of weakness in the inherent ability of the mission system to resist damage and continue to maintain a certain level of functionality.

(3) Recoverability – the ability of the mission system to restore a particular level of operation following damage or attack.

b. Preservation of Life\(^7\)

(1) Escape – the movement of persons to a place of relative safety on board the mission system following an emergency.

(2) Evacuation – the movement of persons to a place of relative safety away from the mission system.

(3) Rescue – the survival and recovery of persons to a place of relative safety, which offers an equivalent or higher level of safety than that prior to the incident.

7.7 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. partial or total mission system loss with associated failure to achieve operational effect; for example, where a mission system is placed in a missile threat environment without appropriate missile defence capability

b. loss of life through inability to contain damage, for example through the spread of fire or flood

c. harm to the environment through an inability to resist damage, for example, fuel leakage caused by impact damage.

7.8 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. collisions caused by the inability of other vessels to detect the mission system

b. loss of life due to restrictions placed on escape and evacuation measures by features designed to reduce the vulnerability of the mission system eg watertight and fire sub-division measures, Chemical, Biological, Radiological, Nuclear (CBRN) arrangements.

7.9 In many cases, considerations regarding safety and the environment will be addressed through suitable controls relating to susceptibility and vulnerability. For example, double hull structures reduce vulnerability with respect to mission system integrity, as well as environmental hazards with respect to fuel spillage. However, the primary objective remains maximising the likelihood of achieving the specified operational effect.

\(^8\) Lloyds Register - Rules and Regulations for the Classification of Naval Ships
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.7

7.10 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

7.11 Survivability is inherently linked to many other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.1 – Structural Integrity
b. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
c. ACCO 1.3 – Electrical Power
d. ACCO 1.4 – Illumination and Lighting
e. ACCO 1.5 – Auxiliary Systems and Hotel Services
f. ACCO 1.8 – Communications
g. ACCO 1.9 – Integrated Control Systems
h. ACCO 2.1 – Propulsion and Manoeuvrability
i. ACCO 2.2 – Situational Awareness
j. ACCO 3.2 – Detectors
k. ACCO 3.3 – Effectors
l. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods
m. ACCO 3.6 – Carriage of Non-crew Personnel.

7.12 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

7.13 For this Functional Objective and with respect to Survivability, specific consideration must be given to:

a. **Understanding threats** – identifying and understanding threats to the mission system in the context of its operating and support intent (OSI). Threats must be considered for both military and non-military activities. Threats may require both passive responses (inherent in a given mission system), as required through this ACCO; and/or active responses covered through other ACCOs (eg ACCO 3.3 – Effectors).

b. **Minimising susceptibility** – reducing the probability of damage; or a threat detecting, acquiring, reaching and detonating through, for example:

 (1) Internal detection systems, including but not limited to detection systems for flood, fire, toxic and atmospheric hazards, noise and magnetic. These considerations should be made in conjunction with the requirements of ACCO 1.9 – Integrated Control Systems for internal detection systems used to monitor threats to systems and equipment.

 (2) External detection and avoidance mechanisms, through the use of Detectors covered in ACCO 3.2. For this purpose, examples may
include but not limited to CBRN detectors, Mine and Obstacle Avoidance Systems, air defence radar etc.

(3) Passive and active minimisation of detectability in terms of mission system signatures, including but not limited to underwater acoustic (ie cavitation and other transmitted noise), airborne noise, wake, magnetic, heat, visual, radar cross section and other electromagnetic emissions.

c. **Minimising vulnerability** – increasing the probability of surviving damage or a successful attack and maintaining continuity of operations at a certain level through inclusion of damage margins in design, redundancy, separation and reconfigurable systems and safe havens. Examples of where these considerations may apply include:

 (1) stability and damage stability measures and margins such as subdivision, cross-flooding and watertight integrity features

 (2) structural integrity damage margins and fire boundaries

 (3) shock protection

 (4) provision of sub-system redundancy, separation, isolation and reconfiguration

 (5) choice of materials and stowage locations for example, explosive ordnance and flammable products

 (6) citadels, CBRN safety zones and wash-down systems.

d. **Maximising recoverability** – increasing the ability to contain further damage and restore operations where possible following the realisation of damage or enemy action. Considerations must include, but are not limited to:

 (1) protocols and mission system configurations for reducing vulnerability and improving recoverability, for example through increased readiness and watertight conditions

 (2) activation of fixed and portable containment and control systems, such as establishing watertight and gas tight boundaries, firefighting, dewatering, degassing, and damage stability systems (eg cross flooding)

 (3) reconfiguration of systems, such as the transfer from normal to alternate electrical power

 (4) provision of sufficient numbers of Suitably Qualified and Experienced Personnel (SQEP), able to contain damage and restore operations.

7.14 For this Functional Objective and with respect to Preservation of Life, specific consideration must be given to:

a. Escape – adequately provide for the movement of persons to a place of relative safety on board the mission system following an emergency

b. Evacuation – adequately provide for egress, abandonment and survival at sea in the event that there is a greater risk to remain on the mission system than to abandon it

c. Rescue – adequately provide for the ability to locate and rescue personnel from the water.
7.15 **Environmental Considerations** – Seaworthiness is about maximising the likelihood of achieving the operational effect whilst seeking to minimise, so far as reasonably practicable, the risks to personnel, the public and the environment. When an event occurs that affects the survival of the mission system, the same considerations for minimising hazards and risks to the environment apply. In many circumstances the systems of control associated with vulnerability and recoverability will inherently assist in minimising hazards and risks to the environment. In some instances, unique environmental vulnerability considerations are appropriate. For example, the location of fuel tanks away from vulnerable areas or through double bottom arrangements may be necessary in order to minimise the release of hazardous substances into the environment.

7.16 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

7.17 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 8

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.8 - COMMUNICATIONS

FUNCTIONAL OBJECTIVE

8.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.8 is defined as:

Appropriate communications systems to provide information exchange are established, monitored and maintained

OUTCOME

8.2 Information can be exchanged both internally and externally in accordance with the operating and support intent (OSI).

RATIONALE

8.3 The ability to communicate clearly and in a timely manner is a fundamental aspect of mission system control and operation, and frequently occurs in concert with external systems and entities. Therefore, the ability to effectively exchange information with internal and external entities and systems is crucial. This ACCO deals with both external and internal communications.

8.4 Information exchange requirements may include:
 a. routine information (eg general announcements, personal such as email)
 b. routine command and control necessary for the day to day operating of the mission system
 c. operational command and control information necessary for conduct of specific tasks
 d. information relating to survivability (eg damage control)
 e. safety of life at sea (eg Emergency Position Indicating Radio Beacon (EPIRB), Global Maritime Distress and Safety System (GMDSS))

8.5 Information exchange requires different communications systems characteristics depending on the primary communication intent. For example, military command and control systems require security standards which would not apply to emergency or safety of life at sea communication arrangements. Communication systems may require characteristics that:
 a. support secure and emergency communications
 b. minimise “leakage” of information (eg from internal communication systems) and protect information from physical loss or cyber attack
 c. enable linkage across multiple systems.

8.6 A mission system may have a range of communication systems, designed to receive and transmit information through, for example:
 a. visual means such as lights, signals, flags etc
b. standard radio spectrum including microwave, UHF, VHF and HF

c. sound, such as underwater telephones, megaphones, sound signals

d. hard connected communications such as through optical fibre, wire, sub-system umbilicals etc.

8.7 Furthermore, as these systems are designed to operate in various mediums, their performance is highly dependent on combinations of physical conditions (such as curvature of the earth) and environmental conditions. For example:

a. Visual communication systems are greatly affected by line of sight and reduction in visibility, such as through moisture or dust in the air, or suspended solids in water.

b. UHF and VHF communication systems are affected by line of sight, variations in atmospheric temperature, pressure and humidity.

c. HF communication systems are affected by ionisation and recombination in the upper atmosphere, which varies with time of the day.

d. Underwater sound communication systems are affected by variations in temperature, pressure, salinity, current speed and direction, background noise etc. Similarly, above water sound communication systems are affected by atmospheric temperature, pressure, humidity, wind speed and direction, background noise etc.

8.8 In general, activities and conditions associated with communications include interfacing, integration, activating, transmitting, receiving, and de-activating.

8.9 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. collision at sea due to misunderstanding the intent of another vessel in a ‘rules of the road’ situation, caused by poor communications

b. failure to conduct effective damage control due to poor hand held communications

c. failure to coordinate a response with cooperating units in order to achieve an operational objective.

8.10 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. detection by enemy due to increased susceptibility associated with active transmissions from communications systems

b. interference with third party communications due to spectrum overload

c. harm to personnel through exposure to radiation from a high-powered transmitter

d. environmental damage through use of hazardous materials in communications systems components such as cadmium, polychlorinated biphenyls (PCBs) etc.
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.8

8.11 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

8.12 This ACCO is linked to other ACCOs but specifically requires consideration in conjunction with:
 a. ACCO 1.3 – Electrical Power
 b. ACCO 1.4 – Illumination and Lighting
 c. ACCO 1.5 – Auxiliary Systems and Hotel Services
 d. ACCO 1.7 – Survivability and Preservation of Life
 e. ACCO 1.9 – Integrated Control Systems
 f. ACCO 2.2 – Situational Awareness
 g. ACCO 3.1 – Tactical Awareness
 h. ACCO 3.3 – Effectors
 i. ACCO 3.7 – Embarked and Deployable Sub-systems.

8.13 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include, but is not limited to, the activities and conditions described below.

8.14 Interfacing and Integration – communication systems must be able to connect to and operate with other sub-systems (eg effectors) to a level which enables the mission system to achieve the defined tasking. In the military context, this may include, for example, whole of combat system alignment. Integration considerations must include, but are not limited to:
 a. compatibility and suitability of interfaces and supporting services (interoperability), such as:
 (1) fixings and couplings
 (2) information transfer and management
 (3) any impairment imposed by the communication system on the normal, essential and emergency functions of the mission system
 (4) safe to operating arcs and zones (eg sound and radiation).
 b. capacity of the mission system to support and sustain the communication system requirements including, but not limited to:
 (1) specialist personnel
 (2) available space
 (3) structural suitability (eg top-side interference and the availability of space)
 (4) the cumulative and concurrent requirements or impacts of multiple communication systems.
8.15 Activation – making a communication system ready for use. This often involves supply of high energy sources to electrical systems and transmitters. Activation considerations must include, but are not limited to:

a. environmental conditions and limitations such as temperatures, humidity and other ambient conditions which may affect operation of transmitters or receivers
b. access control for personnel necessary for the operation of the system
c. other requirements for personnel in the vicinity of the communication system such as safe separation distance and clear areas to prevent exposure to equipment movement, radiation etc
d. requirements for, and hazards associated with, system tests, including:
 (1) interfaces, such as aligning the communication system to auxiliary services
 (2) interoperability, such as confirming integration with a combat management system
 (3) readiness, such as calibration and tests of full system functionality
e. requirements for, and hazards associated with, energizing a communication system such as:
 (1) applying electrical power
 (2) the need for use of dummy loads (eg use of resistors to absorb transmissions during system testing instead of transmitting through antenna).

8.16 Transmitting and Receiving – applying the communication system to exchange information. Transmitting and receiving considerations must include, but are not limited to:

a. power output and proximity to other systems, personnel and wildlife, including considerations for options such as:
 (1) susceptibility, where use of communication system may compromise position relative to a threat
 (2) controls for personnel management (eg radiation hazard management, proximity to ships sound signalling devices etc)
 (3) controls for managing communication systems around wildlife (eg Standard Operating Procedures (SOPs)).
b. bandwidth management, including effects on infrastructure and other systems (interference in airport communications, mobile phone networks etc).

8.17 De-activating – making a communication system safe following use. This often involves the isolation of energy sources and securing the system from movement. Considerations must include, but are not limited to:

a. the requirement for positive confirmation that a communication system has ceased transmitting and been de-energised
b. the requirement to secure the communication system commensurate with the prevailing environmental conditions (eg wind, wave etc) and operational circumstances (readiness, response and access requirements).

8.18 **Information and Cyber Vulnerability** – is of particular concern for communication systems, which are becoming increasingly connected to internal systems and making them accessible to remote exploitation (eg theft of information, system hijacking). Considerations must include, but are not limited to:

a. access control
b. hardware, software and cryptographic protections
c. intrusion detection
d. prevention of information leakage and emissions security
e. detection and avoidance of social engineering (eg phishing and identity theft)
f. isolation of compromised systems
g. system and data recovery.

8.19 **Communications System Durability** – the ability of the communications system to withstand degradation and maintain functional performance in the context of the OSI. Considerations must include, but are not limited to:

a. Limiting the effects of mutual interference, failure or damage of distributed communications networks. This may be through suitable redundancy, isolation and separation of power sources, distribution networks and processing units (eg communications management LANs).
b. The requirements for suitable protection measures to electrical sources, processing units, storage devices and distributed communication networks. These are fitted in order to protect personnel and equipment when operating in normal, degraded and maintenance states. These protection measures (including those associated with damage control functions) shall not pose a danger to personnel, the environment or other equipment and systems.
c. Functionality required to regain sufficient communications (for example, from a ‘dead ship’ condition) to exchange information in support of essential functions.

8.20 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

8.21 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).

CHAPTER 9

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 1.9 - INTEGRATED CONTROL SYSTEMS

FUNCTIONAL OBJECTIVE

9.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 1.9 is defined as:

Appropriate integrated control of multiple functions is established, monitored and maintained

OUTCOME

9.2 Discrete sub-systems and functions are integrated, controlled and monitored sufficiently to achieve the defined tasking in accordance with the operating and support intent (OSI).

RATIONALE

9.3 Each ACCO Functional Objective may have discrete control and monitoring systems whether they be manual or automated. However, a mission system is a ‘system of systems’ hence achievement of the defined tasking and the operational effect requires integrated control systems. For example, integrated control systems can include:

a. combat management systems
b. integrated bridge controls
c. platform management systems
d. personnel and asset tracking systems.

9.4 Therefore, this ACCO addresses those systems whose function is to integrate control of discrete functions to respond in concert to achieve the defined task and the operational effect. The requirement for integrated control systems results from:

a. increasing system complexity
b. the cognitive limits of personnel to process information relating to complex activities and dynamic environments
c. the need for rapid response.

9.5 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. failure to achieve the operational effect due to inadequate control of system interactions such as combat system alignment between detectors and effectors
b. harm to personnel through allowing unsafe operating modes
c. harm to the environment due to lack of monitoring systems, for example absence of tank high level alarms resulting in inadvertent discharge of oily waste via tank vents.
9.6 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. failure to achieve operational effect through external exploitation of vulnerabilities created through interconnection of systems

b. failure to achieve operational effect in degraded conditions due to loss of personnel skills associated with reliance on automation under normal conditions

c. harm to equipment, people or the environment through well intended but inappropriate human intervention with an integrated control system, for example, taking local control of a diesel engine, and thereby isolating the safety monitoring systems for the equipment driven by that diesel engine.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 1.9

9.7 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

9.8 Integrated Control Systems is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping

b. ACCO 1.5 – Auxiliary Systems and Hotel Services

c. ACCO 1.7 – Survivability and Preservation of Life

d. ACCO 1.8 – Communications

e. ACCO 2.1 – Propulsion and Manoeuvrability

f. ACCO 2.2 – Situational Awareness

g. ACCO 3.1 – Tactical Awareness

h. ACCO 3.2 – Detectors

i. ACCO 3.3 – Effectors

j. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods.

9.9 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

9.10 Permutations and Constraints – understanding of the possible system and sub-system permutations and interactions. Understanding of the available permutations and interactions, and their implications for mission system functions and performance must be established and maintained.

9.11 Modes of Operation – ensuring that integrated control systems support the mission system modes of operation in accordance with the OSI. Considerations must include, but are not limited to:

a. Degree of autonomy, including:
(1) which functions should have autonomy and the scope of that autonomy
(2) the need to allow for external intervention
(3) authorisations and handover of control.

b. Prevention of operation outside limits, including:
 (1) warnings, limit indicators etc
 (2) governors, limiters etc
 (3) prevention of operator error.

c. Human factors, including:
 (1) man-machine interfaces
 (2) cultural bias (eg reluctance to openly question authority)
 (3) risk perception (eg ignoring alarms because the perceived risks is low)
 (4) task persistence or fixation (focus on one task to the detriment of the underlying objective or broader issues)
 (5) cue perception (distinguishing a difference between normal and abnormal modes, eg graphical readouts can be more effective than digital readouts)
 (6) habitual response.

d. Degraded operational modes, including:
 (1) Mission system reconfiguration (eg automatic switching from a failed subsystem to an alternative on standby).
 (2) Cascading control for sub-systems and equipment (eg remote control defaults to local operating panel, which in turn defaults to local operation on the equipment). As greater manual intervention is generally required as controls cascade, specific consideration must be given to the maintenance of associated skills, operating instructions etc.
 (3) Control and monitoring locations (eg normal and emergency bridge control).
 (4) Failure modes of sub-systems including the need to fail safe and the ability to isolate systems in emergencies.
 (5) Restarting from 'dead ship' condition.
 (6) Maintenance of skills required to operate in all modes (eg through periodic exercising of system in all modes or provision of operating instructions).

e. Communications between control points.

f. Maintenance and test modes.

9.12 Monitoring and Feedback – obtaining data to understand the current state and, where appropriate, trends over the longer term. Most control systems are based on detecting deviations from the normal – through feedback and monitoring – to determine what control actions may be required. Considerations include, but are not limited to:
a. having appropriate information on the current state and performance of the systems, including:
 (1) the types and volumes of data
 (2) timeframes for response
 (3) accuracy and completeness (quality) of data
b. setting appropriate baselines, tolerances and escalation levels
c. identification and management of errors of evaluation including:
 (1) false positives, for example indicating an alarm condition when no such condition exists
 (2) false negatives, for example not indicating an alarm condition when the alarm condition does exist
d. protection against corruption of information, either unintended (e.g., system issues) or intended (tampering or malicious action)
e. data capture and feedback required for post activity and supportability purposes.

9.13 Information and Cyber Vulnerability – mitigating risks of remote exploitation (e.g., theft of information, system hijacking). Integrated control systems are increasingly connected to external systems, making them accessible to remote exploitation. Considerations must include, but are not limited to:

a. access control
b. hardware and software protections
c. intrusion detection
d. prevention of information leakage
e. detection and avoidance of social engineering (e.g., phishing and identity theft)
f. isolation of compromised systems
g. system and data recovery.

9.14 Integrated Control System Durability – the ability of the system to withstand degradation and maintain functional performance in the context of the OSI. Integrated control systems are usually distributed or networked systems, considerations therefore include, but are not limited to:

a. Limiting the effects of mutual interference, failure or damage of distributed control networks, for example through suitable redundancy, isolation and separation of power sources, distribution networks and processing units.

b. Suitable protection measures to protect personnel and equipment are provided for electrical sources, processing units, storage devices and distributed control networks when operating in normal, degraded and maintenance states. These protection measures (including those associated with damage control functions) must not pose a danger to personnel, the environment or other equipment and systems.

c. Functionality required to regain sufficient integrated control to restore essential functions.
9.15 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

9.16 Further guidance for this Functional Objective is available at the DSwMS website.\[11\]

PART 2: ACCO GOAL 2
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>1–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity and condition based compliance obligation 2.1 - propulsion and manoeuvrability</td>
<td>1–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>1–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>1–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>1–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 2.1</td>
<td>1–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>1–4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>2–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity and condition based compliance obligation 2.2 - Situational awareness</td>
<td>2–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>2–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>2–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>2–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 2.2</td>
<td>2–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>2–4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>3–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity and condition based compliance obligation 2.3 - berthing, mooring, anchoring and towing</td>
<td>3–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>3–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>3–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>3–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 2.3</td>
<td>3–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>3–5</td>
</tr>
</tbody>
</table>
CHAPTER 1

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 2.1 - PROPULSION AND MANOEUVRABILITY

FUNCTIONAL OBJECTIVE

1.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 2.1 is defined as:

Appropriate propulsion and manoeuvrability to achieve the range, speed, position and orientation requirements is established, monitored and maintained

OUTCOME

1.2 The maritime mission system is able to achieve the range, speed, position and orientation to achieve the defined tasking in accordance with the operating and support intent (OSI).

RATIONALE

1.3 Mission systems usually need to position themselves in order to achieve their defined tasks. Each mission system therefore needs to be able to move within a given range and maintain control of its speed, course, orientation and position to the degree required by its OSI.

1.4 Propulsion and manoeuvrability for maritime mission systems may comprise the following systems:

a. **Propulsion systems** – provide power and a means of converting this power into propulsive force.

b. **Manoeuvring systems** – control the orientation, speed and position of the mission system.

c. **Stabilising systems** – assist in control the motion of the mission system and should be considered part of the manoeuvring system as their use or non-use may affect the vessels manoeuvring capability.

1.5 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. The impaired performance of the mission system as a result of misalignment between propulsion equipment choice and the actual usage. For example, placing highly variable loads on a propulsion system designed for constant speed running.

b. Loss of capability and harm to personnel and the environment due to the inability to avoid hazards or threats eg loss of steering resulting in grounding.

c. The reduction of the service life of a propulsion system (or sub-system) as a result of usage in excess of the design limits.

1.6 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. Increased susceptibility of the mission system due to the creation of a larger heat signature
b. harm to personnel, equipment, flora or fauna through propeller strike
c. impact on the environment through emission of exhaust gases.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.1

1.7 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

1.8 Propulsion and Manoeuvrability is linked to other ACCOs but specifically requires consideration in conjunction with:
 a. ACCO 1.1 – Structural Integrity
 b. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
 c. ACCO 1.3 – Electrical Power
 d. ACCO 1.6 – Replenishment and External Services
 e. ACCO 1.9 – Integrated Control Systems
 f. ACCO 2.2 – Situational Awareness.

1.9 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

1.10 Transit – moving a mission system from one point to another. This requires consideration of propulsion and manoeuvring characteristics, including but not limited to:
 a. range and associated considerations of hull design and fuel/energy storage capacities to achieve that range
 b. speed of advance
 c. course keeping and change
 d. draught and trim.

1.11 Manoeuvring and Ship Handling – arriving and departing a berth or buoy, manoeuvring in confined channels and harbours and in proximity to other ships, seamanship evolutions, replenishment at sea, and low and high speed manoeuvres. Considerations of propulsion and manoeuvrability characteristics must include, but are not limited to:
 a. ensuring that ship handlers have situational awareness in accordance with ACCO 2.2 – Situational Awareness
 b. course keeping, change and turning performance
 c. acceleration and speed characteristics
 d. stopping capabilities
 e. responsiveness of propulsion and steering systems
 f. behaviours when operating at low speed and/or in shallow waters
g. duty cycles on propulsion and manoeuvrability systems and equipment
h. the effects of wind, waves, tides and currents
i. other factors that may affect manoeuvring activities such as draught, trim, shaft direction and propeller pitch and load distribution.

1.12 **System Durability** – is the ability of the system to withstand degradation and maintain functional performance and must be considered in the context of the OSI. These considerations must include, but are not limited to:

a. Limiting the effects of operation, failure or damage of propulsion and manoeuvrability systems through suitable redundancy, isolation and separation.

b. Suitable protection measures exist to protect equipment, personnel and the environment with respect to propulsion and manoeuvrability systems when:
 (1) operating in normal modes and degraded states
 (2) undertaking maintenance
 (3) operating near personnel or small craft in the water
 (4) operating in or near sensitive environmental areas
 (5) operating in threat environments.

c. Ensuring that protection measures in and of themselves do not pose a danger to operations, personnel, the environment or any other mission system component. For example, engine protection systems do not shut down an engine when operating in enclosed waters.

d. Functionality to regain sufficient propulsive power and manoeuvrability from a degraded or dead ship condition.

1.13 **Operation and Support.** Excursions outside of the OSI or tasks that impose heavy-duty cycles (e.g., repeated stop-start operation) have the potential to reduce mission system performance, availability and life. Therefore, consideration must be given to establish systems of control to:

a. articulate the operating conditions and limitations to operators
b. align survey, maintenance, repair and replacement regimes to actual usage and condition
c. assure usage within the OSI
d. identify and act where excursion outside the OSI occurs
e. maintain alignment between the OSI and actual or required usage in accordance with GMCO 3.3.

1.14 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).
GUIDANCE

1.15 Further guidance for this Functional Objective is available at the DSwMS website.¹

CHAPTER 2

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 2.2 - SITUATIONAL AWARENESS

FUNCTIONAL OBJECTIVE

2.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 2.2 is defined as:

Situational awareness to support understanding and action in relation to moving and positioning the mission system is established, monitored and maintained.

OUTCOME

2.2 The primary outcome is to achieve sufficient awareness to inform effective decision making regarding the movement and position of the mission system.

2.3 The secondary outcome is to ensure that, where necessary, others are aware of the position, movement and intentions of the mission system.

RATIONALE

2.4 The ability of a mission system to move and maintain position is fundamentally dependent on the knowledge of that mission system’s location relative to fixed and movable objects and to the prevailing circumstances and conditions. In the support of moving and maintaining position, this ACCO enables the execution and maintenance of appropriate course, speed and position of the mission system in relation to the waters, traffic and environmental conditions.

2.5 This ACCO is concerned with providing sufficient awareness for the mission system to move and maintain position. The additional awareness required in achievement of the defined task builds upon this ACCO but is specifically addressed in ACCO 3.1 – Tactical Awareness.

2.6 Situational awareness is about knowing where a mission system is and what is occurring around it. As well as physical location, this includes knowledge of prevailing circumstances and conditions such as wind, weather, tide, current and traffic. Situational awareness is needed for a mission system to:

a. transit from one point to another

b. manoeuvre, including:
 (1) arriving and departing a berth or buoy
 (2) operating in confined channels, around infrastructure (eg bridges), in harbours, and in proximity to other ships
 (3) replenishment at sea and other seamanship evolutions
 (4) low and high speed manoeuvres
 (5) submerging, depth keeping and surfacing where required

c. avoid collision and grounding (including considerations regarding changes to draught and hull appendages).
2.7 A failure to maintain appropriate levels of situational awareness has been identified as one of the primary factors in accidents attributed to human error2,3, for example through:

a. ambiguity in guidance, direction or accountability
b. fixation on a course of action
c. fatigue leading to delayed response or poor judgement
d. cognitive overload due to operational tempo and complexity of the operating environment or task.

2.8 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. loss of capability and harm to personnel and the environment due to collision or grounding
b. harm to other vessels or people, who are forced to take evasive action
c. creation of an international incident through inadvertently operating in a foreign territory.

2.9 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. harm to personnel or the environment through emissions from the use of active detectors
b. unwanted detection in an operational environment as a result of navigation lighting.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.2

2.10 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

2.11 Situational Awareness is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.4 – Illumination and Lighting
b. ACCO 1.7 – Survivability and Preservation of Life
c. ACCO 1.8 – Communications
d. ACCO 1.9 – Integrated Control Systems
e. ACCO 2.1 – Propulsion and Manoeuvrability
f. ACCO 3.1 – Tactical Awareness

3 US Coast Guard Team Coordination Training Student Guide 8/98 Chapter 5
g. ACCO 3.2 – Detectors.

2.12 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

2.13 Observing – gathering and validating (e.g. through multiple observation sets from different sources) the essential data and information of the surrounding environment and of the mission system. Observations must provide sufficient data to enable understanding and decisions with respect to moving and maintaining position of the mission system.

2.14 Understanding – collating, analysing, presenting and interpreting the data and information in order to:

a. Know where the mission system is relative to where it is required to be.

b. Know where the mission system is relative to other objects (this includes potential hazards such as land, seabed or other vessels).

c. Know where the mission system is relative to intentional threats. This aspect of situational awareness is specifically addressed in ACCO 3.1 – Tactical Awareness.

d. Understand the prevailing circumstances and conditions in which the mission system is operating.

e. Anticipate possible scenarios and develop courses of action to achieve the outcome.

2.15 Deciding – choosing the appropriate course of action. This is covered in part, under the command and control requirements of Volume 3, Part 0. With respect to situational awareness, specific considerations must also be given to:

a. operational priorities

b. separation between other vessels or objects

c. navigation rules

d. the requirements for automated decision making and control mechanisms based on complexity of the environment

e. authorisation of automated systems and the handover and intervention points between manual and automatic control, for example activation of autopilot and the protocols for handover.

2.16 Communicating – exchanging information both internally and externally between systems and people. Considerations must include, but are not limited to, the requirement to:

a. establish and maintain a common operating picture amongst mission system personnel
b. direct mission system personnel to carry out a course of action
c. obtain feedback from mission system personnel on the effectiveness of the chosen course of action
d. inform other parties through, for example, radio communications, lights or sound signalling.

2.17 Acting – executing the chosen course of action, monitoring the effectiveness of that course of action and adjusting (through repeating the process above) and follow up as required. With respect to situational awareness, requirements must also be considered in the context of:

a. the operating tempo
b. the complexity of the operating environment and task(s).

2.18 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

2.19 Further guidance for this Functional Objective is available at the DSwMS website.⁶

CHAPTER 3
ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 2.3 - BERTHING, MOORING, ANCHORING
AND TOWING

FUNCTIONAL OBJECTIVE

3.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 2.3 is defined as:

Appropriate berthing, mooring, anchoring and towing provisions to control the mission system position are established, monitored and maintained

OUTCOME

3.2 The mission system is able to be secured for the purpose of controlling its position without the use of its own propulsive power, under all foreseeable conditions.

RATIONALE

3.3 Mission Systems need to secure themselves alongside a wharf or pier, moor to a buoy and be able to anchor. Each mission system therefore needs to have the necessary and suitable arrangements to perform these functions as required by its OSI. In addition, maritime mission systems may be required to tow another mission system or object, or to be towed.

3.4 All these activities involve securing arrangements including fixed and non-fixed devices to hold a ship in position such as anchors, windlasses, bollards, fairleads, chains and mooring ropes. The activities associated with this ACCO include, but are not limited to:

a. Berthing – securing a vessel to her berth. The term “berth” refers to a location such as a quay, wharf, pier or jetty where the ship comes alongside, but it may also mean a place in which a vessel is moored or anchored. It generally refers to the normal location that a mission system is held until required for operations.

b. Docking – making the mission system fast to a fixed or anchored structure, generally for a specific purpose such as loading cargo or embarking/disembarking forces. Periodically, docking will involve removal of the mission system from the water for the purposes of storage, inspection or maintenance.

c. Mooring – making the mission system fast to a strong point such as those found on quays, wharves, jetties, piers, anchor buoys, and mooring buoys. An anchor mooring or mooring buoy fixes a mission system's position relative to a point on the bottom of a waterway without connecting the mission

7 These terms are used loosely in general practice and therefore should be considered in the context of achieving the intent of this Functional Objective rather than considered definitive.
system to shore and allows a mission system to swing around that point when the direction of wind or tide changes.

d. **Intentional Grounding** – the act of deliberately making a mission system fast to the ground. Intentional grounding is often used for the purposes of military operations such as amphibious landings or bottoming of a submarine.

e. **Anchoring** – connecting a mission system to the bed of a body of water to prevent the craft from drifting due to wind or current. Anchoring consists of determining the location, dropping the anchor, laying out the scope of chain (cable), setting the hook, and assessing the arc through which the mission system swings. Anchoring should be conducted in locations where the mission system is sufficiently protected; has suitable holding ground, enough depth at low tide and enough room for the mission system to swing.

f. **Towing and Pushing** – receiving motive assistance from, or rendering it to, another vessel. This also covers tugboat operations which include operations that involve pushing (or “leaning on”) another vessel.

3.5 The act of positioning the mission system for the purpose of berthing, docking, mooring, anchoring or towing is covered under ACCO 2.1 – Propulsion and Manoeuvrability.

3.6 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. loss of capability and damage to the environment as a result of collision or grounding due to mooring failure

b. loss of support capability due to structural damage to wharf side infrastructure caused by inadequate design or lack of infrastructure maintenance

c. harm to personnel caused through mooring activities.

3.7 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. damage or loss of capability where moored or docked vessels are unable to make way to avoid a hazard such as enemy action, a fire on a wharf or severe weather

b. obstruction and trip hazards created by mooring lines through areas of access

c. transfer of exotic species and pests through access to a mission system via mooring arrangements.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 2.3

3.8 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

3.9 Berthing, Mooring, Anchoring and Towing is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.1 – Structural Integrity

b. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
3.10 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

3.11 **Securing** – controlling the position of a mission system, generally without using its own propulsive power, through attaching itself to another object such as a wharf or mooring, or the seabed in case of anchoring. Considerations must include, but are not limited to:

a. intended activity being undertaken by the mission system such as berthing, embarkation of troops and vehicles, dry-docking etc
b. prevailing circumstance and conditions that the mission system may experience such as threat environment, weather, tides and currents, and surge
c. availability and suitability of infrastructure and fixing arrangements
d. use of securing systems for prevention of collision and grounding
e. structural damage that could result from securing.

3.12 **Towing and Pushing** – securing a mission system to another vessel or object and then transferring motive force from or to the mission system. Specific considerations in respect to towing and pushing include but are not limited to:

a. appropriate situation awareness measures including look-outs, lighting and signalling in accordance with ACCO 2.2 – Situational Awareness
b. the ability to be towed or pushed, irrespective of whether the ability to tow another vessel or object is identified through the OSI
c. structural requirements and limitations in accordance ACCO 1.1 – Structural Integrity, including forces and point loads associated with tug operations.

3.13 **System Durability** – the ability of the system to withstand degradation and maintain functional performance, considered in the context of the operating and support intent (OSI). These considerations must include, but are not limited to:

a. limiting the effects of operation, failure or damage of berthing, mooring, anchoring and towing systems through suitable redundancy, isolation and separation
b. suitable protection measures exist to protect equipment, personnel and the environment with respect to berthing, mooring, anchoring and towing systems when:
 (1) operating in special and normal modes, and degraded states
 (2) undertaking maintenance
(3) operating near personnel or small craft in the water
(4) operating in or near sensitive environmental areas
c. the minimum required levels of functionality of berthing, mooring, anchoring and towing systems in normal, degraded or dead ship conditions.

3.14 **Operation and Support** – managing the impact on this Functional Objective from the way the mission system is operated and supported. In particular, excursions outside of the OSI or tasks that impose heavy duty cycles (eg repeated loading of particular securing points) have the potential to reduce mission system performance, availability and life. Therefore, consideration must be given to establish systems of control to:

a. articulate the operating conditions and limitations to operators
b. align survey, maintenance, repair and replacement regimes to actual usage
c. assure usage within the OSI
d. identify and act where excursion outside the OSI occurs
e. maintain alignment between the OSI and actual or required usage in accordance with GMCO 3.3.

3.15 Specific consideration must also be given to:

a. The hazards associated with the storage of mooring lines and anchor cables, for example corrosion and toxic gases.
b. The unique relationship of this ACCO to infrastructure requirements such as wharves, moorings and docking facilities. Many of these aspects should be defined through the development of an OSI in accordance with the Governance and Management Compliance Obligations (GMCOs) in particular those obligations in Goal 2.

3.16 **Risks Outside Direct Control**. In conjunction with the types of risks articulated in ACCO 1.6 – Replenishment and External Services, which are outside of the direct control of a given mission system, specific consideration must also be given to the quality and appropriateness of port facilities such as wharves and moorings that were not considered through the application of the preceding paragraph. Examples may include foreign ports or ports with limited or damaged infrastructure.

3.17 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).
GUIDANCE

3.18 Further guidance for this Functional Objective is available at the DSwMS website.⁸

PART 3: ACCO GOAL 3
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>1–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity and condition based compliance obligation</td>
<td>1–1</td>
</tr>
<tr>
<td>3.1 - Tactical awareness</td>
<td>1–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>1–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>1–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>1–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 3.1</td>
<td>1–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>1–4</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>2–1</td>
</tr>
<tr>
<td>Activity and condition based compliance Obligation 3.2 - Detectors</td>
<td>2–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>2–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>2–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>2–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 3.2</td>
<td>2–3</td>
</tr>
<tr>
<td>Guidance</td>
<td>2–6</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>3–1</td>
</tr>
<tr>
<td>Activity and condition based compliance obligation 3.3 - Effectors</td>
<td>3–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>3–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>3–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>3–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 3.3</td>
<td>3–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>3–5</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>4–1</td>
</tr>
<tr>
<td>Activity and condition based compliance obligation</td>
<td>4–1</td>
</tr>
<tr>
<td>3.4 - carriage and handling of loads</td>
<td>4–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>4–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>4–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>4–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 3.4</td>
<td>4–3</td>
</tr>
<tr>
<td>Guidance</td>
<td>4–7</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>5–1</td>
</tr>
<tr>
<td>Activity and condition based compliance obligation 3.5 - carriage and handling of explosive ordnance and dangerous goods</td>
<td>5–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>5–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>5–1</td>
</tr>
<tr>
<td>Rationale</td>
<td>5–1</td>
</tr>
<tr>
<td>Requirements of Functional Objective 3.5</td>
<td>5–2</td>
</tr>
<tr>
<td>Guidance</td>
<td>5–3</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>6–1</td>
</tr>
<tr>
<td>Activity and condition based compliance obligation 3.6 - Carriage of non-crew personnel</td>
<td>6–1</td>
</tr>
<tr>
<td>Functional Objective</td>
<td>6–1</td>
</tr>
<tr>
<td>Outcome</td>
<td>6–1</td>
</tr>
</tbody>
</table>
Rationale 6–1
Requirements of Functional Objective 3.6 6–2
Guidance 6–4

Chapter 7 7–1
Activity and condition based compliance obligation 3.7 - embarked and deployable sub-systems 7–1
 Functional Objective 7–1
 Outcome 7–1
 Rationale 7–1
 Requirements of Functional Objective 3.7 7–2
 Guidance 7–4
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 1

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.1 - TACTICAL AWARENESS

FUNCTIONAL OBJECTIVE
1.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.1 is defined as:

Tactical awareness to support decision making, coordination and control in relation to achieving the defined task is established, monitored and maintained

OUTCOME
1.2 Tactical awareness required to enable the achievement of the tactical objective is obtained, in accordance with the operating and support intent (OSI).

RATIONALE
1.3 The OSI is generated from a strategic view of the operational effect(s) a mission system may need to achieve, or contribute to throughout its in-service phase. The specific tactical objectives for any defined tasking are generated from operational and tactical plans; or immediate response requirements, and should ideally fall within the OSI. This ACCO is concerned with providing sufficient awareness to achieve the specific tactical objectives and builds on that which is required for the movement and maintenance of position, as covered in ACCO 2.2 – Situational Awareness.

1.4 Activities to provide situational and tactical awareness will overlap in some circumstances, and in fact, the underlying steps of observing, understanding, deciding, communicating and acting are the same, but differ in how they are applied to achieve their respective objectives. In the military context, tactical awareness will involve requirements to:

a. understand the defined tasking and its tactical objectives
b. build a tactical picture
c. perform, confirm or update a threat, target or task evaluation
d. determine target allocation and effector assignment if required
e. manage detector and effector activities
f. perform post activity or engagement assessment including feedback of learnings to inform future operations.

1.5 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. loss of capability and harm to personnel and the environment due to failure to detect and respond to a threat
b. harm to other vessels or people, through misidentification of a target.

1.6 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. unwanted detection in a threat environment as a result of trying to gain tactical awareness (eg use of active sonar)
b. harm to personnel or the environment through emissions from the use of active detectors.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.1

1.7 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

1.8 Tactical Awareness is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.8 – Communications
b. ACCO 1.9 – Integrated Control Systems
c. ACCO 2.2 – Situational Awareness
d. ACCO 3.2 – Detectors
e. ACCO 3.3 – Effectors
f. ACCO 3.7 – Embarked and Deployable Sub-systems.

1.9 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.\(^1\)\(^2\)

1.10 **Observing** – gathering and validating data from multiple sources including mission system detectors, cooperating units, and external sensors such as satellites. The objective is to build a tactical picture for the mission system with respect to threats, targets, non-combatants, cooperating units, fixed and moving objects, the environment and so on. Considerations must include, but are not limited to:

a. the level of clarity the mission system needs with respect to its defined tasking and its tactical objectives
b. the required sophistication of the tactical picture and the complexity involved in building it
c. information sources and requirements including, but not limited to:
 (1) the types and volumes of data
 (2) timeframes for decision making
 (3) the limitations in the quality of data (accuracy and completeness).

\(^1\) Boyd, John, R., The Essence of Winning and Losing, 28 June 1995 a five-slide set by Boyd.

1.11 **Understanding** – collating, analysing, presenting and interpreting the data and information in order to comprehend and ultimately develop appropriate courses of action. Considerations must include, but are not limited to:

a. the ability to process and integrate the data, and to identify and discriminate between contacts
b. knowledge of the capabilities and limitations of the mission system itself within the tactical environment and in the context of the tactical objective
c. knowledge of the capabilities and limitations of cooperating units
d. knowledge of the capabilities and limitations of targets and threats
e. the ability to interpret the prevailing circumstances and conditions (environment) in the context of the tactical objective
f. development and analysis of courses of action including the need to anticipate.

1.12 **Deciding** – choosing the appropriate course of action. This is covered in part, under the command and control requirements of Volume 3, Part 0. With respect to tactical awareness, specific consideration must also be given to the requirements for:

a. automated decision-making and control mechanisms based on volumes, timeframes and complexity
b. authorisation of automated systems and the handover and intervention points between manual and automatic control, for example activation of close-in weapon systems and the protocols for target engagement.

1.13 **Communicating** – exchanging information both internally and externally between systems and people. Considerations must include, but are not limited to:

a. enacting the decision
b. establishing and maintaining a common operating picture both internally and with cooperating units
c. feedback on the progress of the chosen course of action.

1.14 **Acting** – executing the chosen course of action, monitoring the effectiveness of that course of action, adjusting (through repeating the process above) and follow up as required. In the context of tactical awareness considerations must include, but are not limited to:

a. managing detector and effector activities
b. performing post activity or engagement assessments including feedback of learnings to inform future operations.

1.15 **Operation and Support** – managing the impact on this Functional Objective based on the way the mission system is operated and supported. Excursions outside of the OSI may occur in the pursuit of tactical objectives, which have the potential to reduce mission system performance, availability and life. Therefore, consideration must be given to the establishment of systems of control to:

a. articulate the operating conditions and limitations to operators
b. assure usage within the OSI
c. identify where excursions outside the OSI occur

d. maintain alignment between the OSI and actual or required usage in accordance with GMCO 3.3.

1.16 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

1.17 Further guidance for this Functional Objective is available at the DSwMS website. ³
CHAPTER 2

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.2 - DETECTORS

FUNCTIONAL OBJECTIVE

2.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.2 is defined as:

Appropriate detectors to support situational and tactical awareness are established, monitored and maintained

OUTCOME

2.2 Detectors are able to provide the observational data required to enable the situational and tactical awareness sufficient to achieve the defined tasking, in accordance with the operating and support intent (OSI).

RATIONALE

2.3 Maritime mission systems must have a real time understanding of the environments in which they operate, including any passive or active threats, in order to perform their defined taskings and achieve the required operational effects. Requirements for this understanding are defined through ACCO 2.2 – Situational Awareness and ACCO 3.1 – Tactical Awareness.

2.4 The first step in obtaining either situational or tactical awareness of a mission system is observation. Observation requires the ability to gather information through sensing, for the purpose of perceiving something and assigning a level of significance to it. Sensing may occur passively or actively, it may be done through human perception (eg the eye) or man made systems, and it can be employed to gain internal understanding (eg sub-system performance) or external understanding (eg the location of objects relative to the mission system).

2.5 Detectors are those systems employed by a mission system to enable observation through sensing. This ACCO deals with those detectors used for external sensing, contributing to situational and tactical awareness. Detection systems used for internal monitoring (eg gas detection, system performance etc) are covered under ACCO 1.7 – Survivability and Preservation of Life; and ACCO 1.9 – Integrated Control Systems. Embarked or deployable sub-systems may themselves use detections systems or be used by the mission system as detection systems. Where this is the case, this ACCO should be read in conjunction with ACCO 3.7 – Embarked and Deployable Sub-systems.

2.6 Detectors are a key to modern mission systems and form a critical component of both moving and maintaining position (situational awareness), and achieving the defined task. In general, detectors are used to identify and locate physical objects in three-dimensional space, relative to a mission system, or to intercept signals (communications etc). They will generally be required to interface with situational or tactical awareness systems, which interpret the detector information to enable decisions and communication on courses of action. This may also involve integration of the detection system with effectors as part of a combat system.
2.7 The range of detecting systems on a mission system may vary considerably and sensors may obtain information through, for example:

a. electro-magnetic radiation (microwave, HF, infra-red, light etc)
b. pressure (including pressure waves such as vibration, sound)
c. direct physical contact, impacts and shock
d. thermal energy (convection, conduction)
e. magnetism
f. nuclear, biological or chemical means.

2.8 Examples of detection systems include, but are not limited to, radar (navigation, air search targeting), active and passive sonar, magnetic anomaly systems, laser range finders, electronic warfare systems and so on.

2.9 Detector solutions generally involve optimising trade-offs between resolution and the ability to locate objects or signals relative to the mission system. For example, systems designed for high resolution (eg some mine hunting sonars) will have a corresponding lower range. Conversely, systems designed for long range such as low frequency sonars will have limited ability to discriminate or resolve a target in great detail.

2.10 In addition, the ability to locate an object in space is often dependent on the inherent limitations of a given detector. Location of an object relative to a mission system comprises range, bearing and altitude or depth, however a given system will often not ascertain all of these components. For example, a passive sonar may only determine bearing; and a two-dimensional air search radar will only determine range and bearing, but not altitude. Therefore, a combination of detectors is often required in support of situational and tactical awareness.

2.11 Detection systems are designed to operate in various mediums, and their effectiveness can be highly dependent on the dynamic environmental conditions within which the mission system is operating. For example:

a. visual detections systems are greatly affected by turbulence, air quality, sea surface reflection (scintillation) etc
b. infra-red systems are significantly affected by variations in ambient temperature, water vapour etc
c. radar systems are affected by variations of atmospheric temperature, humidity and pressure, wave height (resulting in clutter) etc
d. HF systems are affected by time of the day (ionisation and recombination in the upper atmosphere)
e. sonar systems are affected by variations in water temperature, salinity, pressure, current speed and direction, background noise etc.

2.12 A thorough understanding of detector limitations is required to avoid significant errors in the identification and location of objects (including targets), which can in turn lead to inappropriate courses of action. In the military context, for example, 3D air search radars (providing range, bearing and altitude) may be significantly affected by atmospheric refraction (ducting). This could lead to an aircraft appearing at a lower altitude and closer range to the mission system than its actual position, which could in turn lead to incorrect interpretations of hostile intent.
2.13 Active detectors usually emit energy, which has the effect of increasing the susceptibility of the mission system itself. In some cases, the power levels needed to achieve desired ranges can also be hazardous to personnel or the environment.

2.14 In general, activities associated with detectors include activating, transmitting, receiving, detecting, identifying and de-activating.

2.15 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:
 a. loss of capability and harm to personnel and the environment due to failure to detect and respond to a threat
 b. harm to other vessels or people, through misidentification of a target.

2.16 Examples of the types of consequences associated with achieving this Functional Objective can include:
 a. detection by enemy due to increased susceptibility associated with active transmission of sonar and radar
 b. harm to personnel through exposure to radiation from a high-powered microwave detector
 c. harm to marine life through use of high powered (high source level) sonar.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.2

2.17 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

2.18 Detectors is linked to other ACCOs but specifically requires consideration in conjunction with:
 a. ACCO 1.3 – Electrical Power
 b. ACCO 1.5 – Auxiliary Systems and Hotel Services
 c. ACCO 1.7 – Survivability and Preservation of Life
 d. ACCO 1.9 – Integrated Control Systems
 e. ACCO 2.2 – Situational Awareness
 f. ACCO 3.1 – Tactical Awareness
 g. ACCO 3.3 – Effectors
 h. ACCO 3.7 – Embarked and Deployable Sub-systems.

2.19 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include, but not be limited to the activities and conditions described below.

2.20 **Understanding** – the situational and tactical awareness requirements. The requirements to detect objects or signals for a given mission system must be identified and understood in the context of the operating and support intent (OSI). These requirements must be considered for both military and non-military activities,
and may generate the need for active and/or passive detection. Thus, the level of understanding of these requirements must be sufficient to enable the design, allocation and integration of detection systems. Considerations must include, but are not limited to:

a. The fidelity with which an object or signal must be resolved (degree of discrimination). This is often dependent on a balance of frequency and power requirements.

b. Locational requirements, which must be determined relative to the mission system, in terms of:
 (1) range
 (2) bearing
 (3) altitude or depth.

c. Requirements for a combination of detection systems used in concert to provide the desired level of situational and tactical awareness.

d. Requirements to measure, monitor and predict environmental factors contributing to detector performance, and required for interpretation of detector outputs (e.g., atmospheric, oceanographic conditions, etc).

2.21 Integrating – enabling the detector to interface and operate with other sub-systems (e.g., effectors) to a level which enables the mission system to achieve the defined tasking. In the military context, this often includes whole of combat system alignment. Integration considerations must include, but are not limited to:

a. compatibility and suitability of interfaces and supporting services (interoperability) such as:
 (1) fixings and couplings
 (2) utilities including power, fuel, air, water etc
 (3) information transfer and management
 (4) any impairment imposed by the detector on the normal, essential and emergency functions of the mission system
 (5) safe to operating arcs and zones (e.g., sound and radiation)

b. capacity of the mission system to support and sustain the sub-system requirements such as:
 (1) specialist personnel
 (2) available space
 (3) structural suitability
 (4) the cumulative and concurrent requirements or impacts of multiple detectors.

2.22 Activating – is the process of making a detector ready for use. This often involves supply of high energy sources to mechanical and electrical detecting systems. Activation considerations must include, but are not limited to:

a. environmental conditions and limitations including, but not limited to:
(1) motions, including those intended by the mission system, for example through accelerations and turning; and those caused through the external environment, for example wind, wave and current

(2) temperatures, humidity and other ambient conditions

b. access control for personnel necessary for the operation of the system

c. other requirements for personnel in the vicinity of the detector such as safe separation distance and clear areas to prevent exposure to equipment movement and/or radiation

d. requirements for, and hazards associated with system tests, including:
 (1) interfaces such as aligning the detector to auxiliary services
 (2) interoperability such as confirming integration with a combat management system
 (3) readiness such as calibration and tests of full system functionality

e. requirements for, and hazards associated with energising a detector such as:
 (1) through application of electrical power
 (2) the need for use of dummy loads (eg use of resistors to absorb transmissions during system testing, instead of transmitting through an antenna)
 (3) requirements, hazards and restrictions associated with the deployment of detection systems outside the mission system, such as towed array sonar (this must be considered in context of ACCO 3.7 – Embarked and Deployable Subsystems).

2.23 Transmitting and Receiving – applying a detector to search and/or monitor in order to gain information on the presence, and where possible the location in space, of an object or signal. In the case of a signal it may also be to obtain information on the content of that signal. Transmitting and receiving considerations must include, but are not limited to:

a. power output and proximity to other systems, personnel and wildlife, including the need for controls for:
 (1) sector or zone management (eg sector blanking)
 (2) managing susceptibility, where use of a detector may compromise the mission system location
 (3) people management (eg removing divers from water during sonar use, ceasing transmission to allow maintainer access to a mast etc)
 (4) managing detectors around wildlife (eg Standard Operating Procedures).

b. effects on infrastructure and other systems (interference with airport radars, mobile phone networks etc).

2.24 Detecting and Identifying – information processing tasks that may be conducted in concert with ACCO 2.2 – Situational Awareness and ACCO 3.1 – Tactical Awareness. Considerations must include, but are not limited to:
a. errors that may be introduced through system operation (eg gyroscopic precession introducing positional errors)

b. errors or limitations that may be introduced through the environment due to phenomena such as:
 - reflection
 - refraction resulting in, for example, horizontal or vertical bearing error
 - scattering
 - spreading
 - absorption

c. requirements for independent verification (eg Identify Friend or Foe (IFF)).

2.25 **De-activating** – making a detector safe following use. This often involves the isolation of energy sources and securing from movement. Considerations must include but are not limited to:

a. requirements for positive confirmation that a detector has ceased transmitting and has been de-energised

b. requirements to secure the detector commensurate with the prevailing environmental conditions (eg wind, wave etc) and operational circumstances (readiness, response and access requirements).

2.26 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

2.27 Further guidance for this Functional Objective is available at the DSwMS website.⁴

CHAPTER 3

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.3 - EFFECTORS

FUNCTIONAL OBJECTIVE

3.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.3 is defined as:

Appropriate effectors to take action against a target are established, monitored and maintained

OUTCOME

3.2 The mission system has the means to create the intended effect on a specified target, in accordance with the operating and support intent (OSI).

RATIONALE

3.3 Maritime mission systems may be designed with the capability to engage targets. A target is an entity against which a mission system may be required to take action, in order to achieve a specified operational effect. Targets generally relate to military threats or objectives, but may also be considered in the context of non-military activities. For example, destruction of a submerged hazard in a shipping lane may require the application of an effector. An effector is a system that may be used to capture, exploit, disrupt, neutralise or destroy a target.

3.4 In the military context, effectors are generally a component of a combat system, which may also include communications systems (ACCO 1.8), tactical awareness systems (ACCO 3.1), detectors (ACCO 3.2), and embarked and deployable sub-systems (ACCO 3.7).

3.5 This ACCO is not intended to cover how all operational effects will be achieved in the context of the OSI, but rather is focused on 'offensive-type' systems which are not directly addressed in other ACCOs. A Rigid Hull Inflatable Boat (RHIB) or boarding party may be used to achieve an operational effect, however this is sufficiently covered through application of a combination of ACCOs, including this one. For example, a boarding party apprehending a Suspected Illegal Entry Vessel (SIEV) would need consideration of communications (ACCO 1.8), tactical awareness (ACCO 3.1), detectors (ACCO 3.2), effectors such as tactical batons and side-arms (ACCO 3.3), possibly tactical support elements from embarked forces (ACCO 3.6), and certainly the use of boats as embarked and deployable sub-systems (ACCO 3.7). Achievement of specific operational effects in the context of an OSI, will always require the application of multiple ACCOs, and in some cases, all.

3.6 In the context of this ACCO, effectors usually comprise an energy source and a delivery system to direct that energy source against the target or threat. Effectors may include, but are not limited to:

a. projectiles including rockets, missiles; torpedoes, bombs, bullets and associated delivery systems
b. explosives
c. directed-energy including high powered lasers, microwaves, sonar and other sonic or ultrasonic devices
d. water cannons, fire hoses
e. disruptors or de-armers such as those used to neutralise ordnance
f. naval mines
g. personal equipment including tactical batons and side-arms
h. chemicals such as tear gas
i. jammers
j. cyber-attack systems (hacking, viruses, etc).

3.7 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. failure to deliver operational effect due to inability to destroy a target such as an enemy supply chain
b. harm to personnel due to failure to neutralise a threat such as an incoming missile
c. environmental contamination from poor maintenance (eg propellant leakage).

3.8 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. inability to deliver other mission system functions due to deployment of an effector (eg deploying close in weapons systems may limit aircraft operations)
b. harm to personnel through effector handling activities such as embarking or disembarking torpedoes
c. harm to personnel from blast, noise and hazardous material etc
d. environmental contamination through deployment of effectors, from sources such as propellants (eg Otto Fuel) or ordnance (eg lead).

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.3

3.9 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

3.10 Effectors is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.3 – Electrical Power
b. ACCO 1.5 – Auxiliary Systems and Hotel Services
c. ACCO 1.7 – Survivability and Preservation of Life
d. ACCO 1.8 – Communications
e. ACCO 1.9 – Integrated Control Systems
f. ACCO 3.1 – Tactical Awareness
g. ACCO 3.2 – Detectors
h. ACCO 3.4 – Carriage and Handling of Loads
i. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods
j. ACCO 3.7 – Embarked and Deployable Sub-systems.

3.11 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include, but not be limited to the activities and conditions described below.

3.12 Understanding Threats – the assessment of threats associated with both military and non-military activities, in the context of the OSI, to a level that allows the appropriate response options to be determined. Threats may require active responses, which are covered by this ACCO and/or passive responses, which are covered through other ACCOs (eg ACCO 1.7 – Survivability and Preservation of Life).

3.13 Embarking – the loading and off-loading of effectors (eg explosive ordnance, munitions etc), which must be considered in the context of ACCO 3.4 – Carriage and Handling of Loads, ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods and safe work practices for embarkation and disembarkation at sea or alongside.

3.14 Integrating – enabling the effector to interface and operate with other sub-systems (eg detectors) to a level which enables the mission system to achieve the defined tasking. In the military context, this often includes whole of combat system alignment. Integration considerations must include, but are not limited to:

a. compatibility and suitability of interfaces and supporting services (interoperability), such as:
 (1) fixings and couplings
 (2) utilities including power, fuel, air, water etc
 (3) information transfer and management
 (4) any impairment imposed by the effector on the normal, essential and emergency functions of the maritime mission system
 (5) safe to fire arcs and zones (eg efflux, noise and radiation)

b. capacity of the maritime mission system to support and sustain the sub-system requirements such as:
 (1) specialist personnel
 (2) space
 (3) structural suitability
 (4) the cumulative and concurrent requirements or impacts of multiple effectors.

3.15 Activating and Loading – making an effector ready for use. This often involves the handling and supply of explosive ordnance, propellants and other high energy sources to mechanical and electrical delivery systems. This often occurs
under dynamic conditions and in confined spaces. Considerations must include, but are not limited to:

a. environmental conditions and limitations such as:
 (1) motions, including those intended by the mission system, for example through accelerations and turning; and those caused through the external environment for example wind, wave and current
 (2) temperatures, humidity and other ambient conditions
 (3) other environmental conditions such as potential for lightning strike etc
b. access control for personnel necessary for the operation of the system
c. other requirements for personnel in the vicinity of the effector such as safe separation distance and clear areas
d. requirements for system tests, including:
 (1) interfaces such as aligning the effector to auxiliary services
 (2) interoperability such as confirming integration with a combat management system
 (3) readiness such as tests of full system functionality
e. requirements for loading or energising an effector such as:
 (1) movement of explosive ordnance from storage to the effector
 (2) applying power to effectors from electrical, fluid (hydraulic, pneumatic), chemical or other energy sources
 (3) use of dummy versus live loads in system tests including protocols to prevent inadvertent use of live loads.

3.16 Engaging - the application of an effector against the target. Engaging typically includes the steps of authorising, deploying, controlling and discriminating. The need to correct, recover or suspend the engagement once commenced must also be taken into account. Considerations must include, but are not limited to:

a. Authorising engagement with a target, which often occurs under highly dynamic and stressful conditions, and with incomplete and/or inaccurate information. Command mechanisms associated with authorising an engagement must therefore provide the highest level of confidence possible to ensure the appropriate and sanctioned application of an effector. In the context of the OSI, considerations must be given to the following risks to confidence in authorising engagement:
 (1) volume of information exceeds the capacity to process or is insufficient to formulate a decision
 (2) information is not timely or is not current relative to the task
 (3) information is not accurate or is incomplete; or
 (4) decision rights are not clear or not effectively communicated, leading to unsanctioned authorisation.

b. Deploying the effector, which involves the delivery system directing and delivering the effect to the target. Hazards and risks must be considered in the context of:
(1) Initiation, which may result in noise, shock, heat, efflux (blast), electromagnetic effects, post-initiation susceptibility and vulnerability.

(2) Monitoring and control (eg guided or directed effectors) to capture, exploit, disrupt, neutralise or destroy a target and minimise the possibility of unintended harm. Specific consideration must be given to maintaining target discrimination to ensure the effector is applied where intended. Note that monitoring is a part of the detection function (ACCO 3.2) and is required throughout an engagement.

(3) Correction, in terms of the re-direction or re-application of the effector to ensure the effect is applied where intended.

(4) Recovery, in terms of the action(s) to be taken when an effector does not operate as intended (eg misfire). For example, establishment and training of immediate action drills for use of small arms or procedures to be followed where a missile fails to launch.

(5) Suspension of engagement, when there is a change in the conditions under which engagement was authorised. Examples include requirements for self-destruct mechanisms for guided munitions, check fire procedures and the use of “dead man switches” for gunfire serials.

c. The engagement of effectors is managed in conjunction with the requirement to interpret relevant information sources (eg detect, identify and locate a threat) within the timeframes associated with the threat or operational requirement. Considerations for engaging must therefore be determined in conjunction with the requirements of ACCO 3.1 – Tactical Awareness and 3.2 – Detectors.

3.17 De-activating – making an effector safe following use. This often involves the unloading and return of explosive ordnance, propellants and isolation of energy sources. Considerations must include but are not limited to:

a. the requirement for positive confirmation that an effector has been de-activated, unloaded and or de-energised

b. the requirement to secure the effector commensurate with the prevailing environmental conditions (eg wind, wave etc) and operational circumstances (readiness, response and access requirements).

3.18 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwr maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

3.19 Further guidance for this Functional Objective is available at the DSwMS website.5

CHAPTER 4

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.4 - CARRIAGE AND HANDLING OF LOADS

FUNCTIONAL OBJECTIVE

4.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.4 is defined as:

Processes and systems for the carriage and handling of loads are established, monitored and maintained

OUTCOME

4.2 Loads can be effectively carried and handled in support of the defined taskings, in accordance with the operating and support intent (OSI).

RATIONALE

4.3 Maritime mission systems are often required to carry loads to support taskings. The proper stowage and securing of loads is of the utmost importance for safety of life at sea. Improper stowage and securing of loads has resulted in numerous serious injuries and in loss of life, not only at sea, but also during loading and off-loading (sometimes referred to as discharge). Moreover, unsecured or poorly handled loads may be damaged or cause damage to the mission system itself.

4.4 Modern mission systems often need to be highly configurable in order to adapt to changing operational requirements. Systems associated with handling, securing and storing of loads must have sufficient flexibility to support these changing requirements. However, this requires deliberate planning and consideration in the context of the operating and support intent. This planning may consider, for example:

a. staging and pre-positioning of loads before embarkation taking account of, for example, concurrent wharf-side operations
b. sequencing the order of loading depending on, for example, the expected sequence of consumption or use of the loads, weight distributions and effects on structural integrity, trim and stability and so on
c. reconfiguration of the mission system for different loads and taskings
d. limitations to mission system functionality or performance resulting from the carriage of certain load.

4.5 Systems for the carriage and handling of loads generally comprise the following components:

a. the load itself, such as:
 (1) vehicles

(2) containers
(3) loose, flat, pallet, portable tank or packaged units of cargo

b. arrangements for loading (embarkation), off-loading (disembarkation), handling, movement and storage of loads such as:
 (1) lifting and handling appliances including cranes, forklifts, cargo lifts, pallet trolleys/jacks etc
 (2) storage and securing arrangements
 (3) access including hatches, doors, soft patches etc

c. wharf-side arrangements including:
 (1) lifting and handling appliances
 (2) staging, pre-positioning and sequencing for load movement
 (3) security.

4.6 This ACCO also addresses general requirements for carriage and handling systems and appliances used for:
 a. carriage of explosive ordnance and dangerous goods, in conjunction with ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods
 b. embarking or deploying sub-systems, in conjunction with ACCO 3.7 – Embarked and Deployable Sub-systems
 c. lifting of personnel.

4.7 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:
 a. failure to achieve the defined tasking due to inability to integrate loads into the mission system
 b. harm to personnel or equipment as a result of the inappropriate use of load handling equipment
 c. loss of stability due to cargo movement in a heavy sea state as a result of inappropriate cargo securing arrangements
 d. harm to personnel and the environment due to failure of a wharf-side crane dropping cargo into the port.

4.8 Examples of the types of consequences associated with achieving this Functional Objective can include:
 a. impact on other operational requirements of the mission system as a result of the carriage of cargo in lieu of other embarked or deployable sub-systems
 b. potential harm to personnel where cargo prevents or hinders escape or evacuation
 c. harm to the environment through carriage of cargo from overseas back into Australia in contravention of quarantine requirements.
REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.4

4.9 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

4.10 Carriage and Handling of Loads is linked to other ACCOs but specifically requires consideration in conjunction with:
 a. ACCO 1.1 – Structural Integrity
 b. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
 c. ACCO 1.5 – Auxiliary Systems and Hotel Services
 d. ACCO 1.6 – Replenishment and External Services
 e. ACCO 3.3 – Effectors
 f. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods
 g. ACCO 3.7 – Embarked and Deployable Sub-systems.

4.11 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include, but not be limited to the activities and conditions described below.

4.12 **Staging, Pre-positioning and Sequencing** – planning and preparations prior to loading must consider how loads will be staged and pre-positioned to be loaded in an appropriate sequence. Considerations must include, but are not limited to:
 a. staging and making ready loads, including:
 (1) protection or preservation for the marine environment
 (2) packaging, handling, stowage and transportation preparations
 (3) identification and separation of incompatible cargoes
 b. pre-positioning in terms of load locations and sequence including:
 (1) incompatible operation (eg multiple loading evolutions)
 (2) traffic management
 c. sequence of loading in terms of load distribution and location on the mission system taking account of:
 (1) structural stresses including hogging, sagging, point loads etc
 (2) effects on buoyancy, trim and stability, and seakeeping characteristics of the mission system
 (3) movement, access, egress etc
 d. sequence of intended use in terms of:
 (1) consumption (eg loading of provisions into refrigerated storage)
 (2) off-loading (eg assault vehicles ahead of support vehicles, order of ports etc).
4.13 **Loading and Off-loading** – movement of the load onto and off the mission system, both alongside and at sea. Loading and off-loading must be considered in conjunction with ACCO 1.6 – Replenishment and External Services and ACCO 3.5 - Carriage of Explosive Ordnance and Dangerous Goods where applicable. Loading and off-loading considerations must include, but are not limited to:

a. Operation of the loading systems including:
 1. knowledge of the operation of the system (eg the need for specific training, licencing and instruction)
 2. operating parameters and limitations for use of the system (eg safe working loads (SWL), lifting height and reach, rates of movement etc).

b. Relative movement between the load and other objects including, for example, people, the mission system, and fixed or moving platforms such as wharves, other vessels or aircraft (helicopters); specific considerations of relative movement must include:
 1. system operations and degrees of freedom of the load during loading or off-loading, such as movement of a crane or a forklift
 2. environmental aspects such as wind speed, wave height, temperature (eg crane operations in high winds)
 3. load momentum, including any requirement for fenders, stops etc.

c. Dynamic loading associated with:
 1. weight changes through the sea-air interface, for example when recovering submerged objects
 2. surface tension on recovery (eg lifting of small craft from the water etc)
 3. accelerations due to environmental effects such as waves
 4. cross load tension such as load transfer between vessels at sea (eg replenishment at sea, jackstay transfer etc).

d. Proximity of loading systems (taking into account their operating envelopes) to:
 1. each other
 2. fixed objects
 3. hazards such as high voltage power lines
 4. other activities such as road and foot traffic, maintenance work etc.

4.14 **Handling** – the intentional movement of loads within a mission system. Handling of loads may occur in relatively benign environments such as alongside, or in highly dynamic environments when at sea; and may pose significant risks to personnel, the load itself and the mission system. Handling considerations must include, but are not limited to:

a. Minimising the need for handling, through for example:
 1. suitable packing and stowage systems
 2. avoiding the need to breakdown loads for movement and stowage within the mission system
(3) reducing manual handling where possible

(4) appropriate location and sequencing of loads in the first instance.

b. Load restrictions and handling procedures based on the prevailing circumstances and conditions, particularly those that affect the motion of the mission system. For example, forklift operations or use of hydraulic pallet jacks may be limited or restricted in certain wave conditions. Similarly, fixed handling equipment such as cranes may require restrictions due to pitch and roll effects.

c. The need for defined access points, handling routes, barriers, guards, markings and signage.

d. Effects on buoyancy, trim and stability, and seakeeping characteristics of the mission system whilst moving loads within the mission system.

e. Fixed handling equipment such as cranes, lifts, and ramps with respect to:
 (1) rated load and loading operations
 (2) forces due to load motion (e.g., weight of load exceeds SWL of lifting appliance due to vertical accelerations of the mission system)
 (3) forces and associated deflections due to mission system motion and inclination (e.g., jamming of a cargo lift due to flexing of the vessel at sea)
 (4) appropriate distinction and procedures between service lifts and personnel lifts
 (5) secured positions, particularly where the handling equipment performs multiple functions (e.g., an aircraft elevator that forms part of the deck).

f. Mobile handling equipment, which in addition to the requirements of fixed handling equipment, must also consider:
 (1) loose gear (such as tackle blocks, hooks etc.), fittings and ropes
 (2) stowage when not in use.

g. Movement of loads under their own power (e.g., motor vehicles) including considerations with respect to:
 (1) venting of exhaust gases
 (2) ramp angles exceeding traction, motive or braking limits due to vessel pitch or roll.

h. Handling of fluids, which is also addressed under ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping also requires specific consideration of:
 (1) free surface effects (e.g., movement of fluid in a partially filled tank)
 (2) spillage and leakage.

4.15 **Securing and Storing** – fixing of the load for carriage in the mission system and ensuring its safekeeping during transit. Considerations for securing and storing loads must include, but are not limited to:

a. suitable securing arrangements to prevent loads shifting

b. the ability of both the load and the securing arrangement to withstand dynamic forces due to mission system motion
c. use of purpose built securing systems in preference to ad hoc or temporary securing arrangements, which can often be insufficient to withstand high dynamic forces

d. the behaviour of the load itself during carriage, including:
 (1) any tendency to deform or compact, which may cause a loosening of securing arrangements
 (2) any tendency to slip where friction coefficients are low (or may be lowered by exposure to water or other substances)
 (3) free surface effects associated with carriage of fluids or shifting solids

e. distributing and orienting the load to prevent tipping or collapsing

f. any impingent on access, escape and emergency routes due to the location and securing of the load

g. prevention of load contamination, degradation or damage, which may occur, for example, through exposure to the maritime environment or extremes of temperature

h. provision of support and operating elements including lifting apparatus, pallets, cages, tooling etc

i. ensuring that securing and storing is:
 (1) planned and supervised by Suitably Qualified and Experienced Personnel with sound practical knowledge of designed load securing requirements and limitations
 (2) conducted by properly qualified and experienced personnel

j. ensuring ship-handling decisions, especially those taken in bad weather conditions, take into account the characteristics of the load, its stowage position and its securing arrangements.

4.16 **Interfacing** – connecting a load with the mission system. Interfacing is often required to maintain the load in operating condition (e.g., charging of batteries on vehicles, electrical power for refrigerated containers, communication links with an embarked sub-system) and the mission system must have sufficient and suitable interfaces to support the embarked loads. Considerations must include, but are not limited to:

a. fixings and couplings

b. utilities including power, fuel, air, water etc

c. ability to disconnect or isolate loads from the mission system and/or each other, particularly in emergencies.

4.17 **System Durability** – the ability of the system to withstand degradation and maintain functional performance, in the context of the OSI. Considerations with respect to systems used for the carriage and handling of loads must include, but are not limited to:

a. Limiting the effects of operation, failure or damage of carriage and handling systems through suitable redundancy, isolation and separation.

b. Suitable protection measures exist to protect equipment, personnel and the environment with respect to carriage and handling systems when:
(1) operating in normal modes and degraded states
(2) undertaking maintenance
(3) operating near personnel, other handling systems or fixed objects
(4) operating in or near sensitive environmental areas.

c. Ensuring that protection measures in and of themselves do not pose a danger to operations, personnel, the environment. For example, ensuring venting of vehicle exhaust fumes does not compromise the watertight integrity of the mission system.

d. Structural requirements and limitations in accordance with ACCO 1.1 – Structural Integrity, including forces, distributed loads and point loads associated with handling and handling equipment.

4.18 In addition to the above, consideration must also be given to:

a. Any impairment imposed by the carriage of loads on the normal, essential and emergency functions of the mission system.

b. Any limitations the carriage of loads poses on the OSI or tasking requirements of the mission system eg carriage of loads in a mission system hangar space may impede or prevent aviation operations.

c. Emergent requirements to embark loads which were not considered in the earlier phases of the CLC. These may require review and amendment of the OSI in accordance with GMCO 2.5 – Mission and Support System Remain Aligned to Approved OSI and GMCO 3.3 – OSI is Evolved as Required.

4.19 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

4.20 Further guidance for this Functional Objective is available at the DSwMS website.\(^7\)

\(^7\) http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
CHAPTER 5

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.5 - CARRIAGE AND HANDLING OF
EXPLOSIVE ORDNANCE AND DANGEROUS GOODS

FUNCTIONAL OBJECTIVE

5.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.5 is defined as:

Processes and systems for the carriage and handling of ordnance and dangerous goods are established, monitored and maintained

OUTCOME

5.2 Dangerous goods including ordnance can be effectively carried and handled in support of the defined task and in accordance with the operating and support intent (OSI).

RATIONALE

5.3 Many maritime mission systems are required to stow, handle and use dangerous goods including, but not limited to ordnance (spanning small arms munitions to missiles), fuels, lubricants or chemicals. In all cases, suitable arrangements must be provided for the proper loading, off-loading, handling and storage of these dangerous goods.

5.4 ACCO 3.4 – Carriage and Handling of Loads describes the requirements for the management and controls associated with the loading, off-loading, storage and use of loads. Explosive ordnance and dangerous goods are types of loads that may require additional considerations. This ACCO deals with those additional considerations and must be read in conjunction with ACCO 3.4.

5.5 Implicit in the term ‘dangerous’ is that there exists some inherent high level of risk associated with the goods in question. It also suggests that some particular standard of care applies. In the Defence Seaworthiness Management System (DSwMS) context, the standard for managing all hazards and risks is that they be eliminated or minimised so far as is reasonably practicable (SFARP). In the context of explosive ordnance, greater consideration may be required with respect to the resources made available for the management of the associated hazards and risks to demonstrate that the SFARP test is met.

5.6 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. failure to achieve the defined tasking due to inability to integrate explosive ordnance into the mission system
b. harm to personnel through exposure to hazardous chemicals
c. harm to personnel and the environment through catastrophic explosion.

5.7 Examples of the types of consequences associated with achieving this Functional Objective can include:
a. inability to deliver other mission system functions due to the movement and handling of dangerous goods (e.g., cessation of radiating on detectors or communications systems whilst handling ordnance or fuel)

b. environmental contamination through venting, or intentional dumping from the mission system.

5.8 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

5.9 Carriage of Explosive Ordnance and Dangerous goods is inherently linked to many other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.1 – Structural Integrity
b. ACCO 1.6 – Replenishment and External Services
c. ACCO 1.7 – Survivability and Preservation of Life
d. ACCO 1.9 – Integrated Control Systems
e. ACCO 3.3 – Effectors
f. ACCO 3.4 – Carriage and Handling of Loads
g. ACCO 3.7 – Embarked and Deployable Sub-systems.

5.10 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

5.11 **Staging, Pre-positioning, Sequencing, Loading and Unloading** – where dangerous goods are located within the proximity of a mission system they may pose a risk to the mission system itself should an event occur; such as unintended activation, explosion, spills etc. Therefore, additional considerations to those of ACCO 3.4 – Carriage and Handling of Loads must include:

a. Appropriate safety, security and emergency response measures for both the protection of the dangerous goods and of the mission system itself. This may involve separation, blast protection, monitoring (e.g., patrols or cameras), and the provision of response capabilities.

b. The quantities and co-location of incompatible loads or loads which may react to reinforce or amplify magnitude of damaging effects. For example, co-location of caustic substances with fuels may initiate fire; or co-location of fuel bladders with ammunition may result in greater damage than that from either in isolation.

c. The need to minimise the time taken during which the dangerous goods remain pre-positioned or awaiting stowage, to avoid, for example, extended exposure to the elements, security risks etc.
The need to understand and communicate any exposure limits and required conditions associated with the dangerous goods including for example, temperature, humidity, electrical interference, shock, vibration etc.

5.12 **Handling, Securing and Storage** – Dangerous goods held on board may pose a risk to the mission system through mishandling or degradation of the dangerous goods. Therefore, additional considerations to those of ACCO 3.4 – Carriage and Handling of Loads must include:

a. Management of conditions and limits associated with the dangerous goods such as spark prevention, earthing, cooling, minimal height lifts etc.

b. Specific requirements associated with compatibility as articulated at Volume 3, Part 0. This is of particular importance where there is a need for dangerous goods to coexist or interact appropriately with other elements, systems, personnel and the environment. An example of managing compatibility issues is through separation, such as:

 (1) not locating magazines against the hull
 (2) not locating paint and or chemical storages near potential ignition sources.

c. Mitigation of effects where dangerous goods are used or activated intentionally or inadvertently. For example:

 (1) venting from the storage space (eg explosive by-products, toxic gases etc)
 (2) use of blast and fire resistant bulkheads
 (3) orienting ordnance to minimise consequences through inadvertent discharge
 (4) making provision for rapid dumping or discharge.

d. The need for access controls for personnel handling and working with explosive ordnance.

e. The need for quarantine arrangements where dangerous goods are contaminated, faulty or expired; for example used refrigerant gas, or defective or expired munitions.

5.13 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

5.14 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).
CHAPTER 6

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.6 - CARRIAGE OF NON-CREW PERSONNEL

FUNCTIONAL OBJECTIVE
6.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.6 is defined as:

Processes and systems for the carriage of non-crew personnel are established, monitored and maintained

OUTCOME
6.2 Non-crew personnel can be embarked, managed, supported and, where applicable, enabled to effectively contribute to the defined tasking.

RATIONALE
6.3 Maritime mission systems are generally crewed by personnel whose roles are to perform functions that form an inherent and enduring component of the mission system, in accordance with its OSI. Defining the requirements for the crew or complement of a mission system is governed through application of GMCO 1.4 – Critical Function, GMCO 1.5 – Critical Competencies and Volume 3, Part 0 (Personnel Requirements) as they apply to each ACCO Functional Objective. However, a mission system is often required to embark and carry military and/or civilian non-crew personnel. Non-crew personnel typically have less knowledge than the crew of the mission system. This is of particular note in regards to shipboard routines, layout; and fire-fighting and evacuation procedures. In addition, non-crew personnel may vary from able-bodied to injured, to those who require full assistance. They may also range from highly disciplined personnel who can contribute, where required, through to uncooperative or antagonistic detainees.

6.4 Examples of non-crew personnel may include but are not limited to:

a. Special personnel – people required in connection with the mission system’s defined tasks. These may include trials and training personnel, aircraft pilots and crew, marine pilots, non-organic maintenance personnel, trainees, security detachments, technical and scientific staff. Special personnel are typically expected to be disciplined and able-bodied, and to have a fair knowledge of shipboard routines, layout, fire-fighting and evacuation procedures and safety equipment.

b. Embarked forces – troop carrying. Embarked forces are expected to be very fit, well disciplined and able-bodied but, in general, will have a limited knowledge of shipboard routines, layout, fire-fighting and evacuation procedures and safety equipment.

c. Passengers – people who are not employed or engaged in any capacity on board the ship and who do not fall into any of the other categories.
Passengers may include visiting dignitaries and families and are expected to have little or no knowledge of shipboard routines, layout, fire-fighting and evacuation procedures and safety equipment.

d. Persons carried in an emergency – people who are embarked in order to avoid a threat to their safety. These people are expected to have no knowledge of shipboard routines, layout, fire-fighting and evacuation procedures and safety equipment. People in this category are usually embarked as a result of:

 (1) general recovery for safety of life at sea
 (2) humanitarian assistance and disaster relief.

e. Wounded personnel - injured people carried on board. Carriage of these people may be a planned function of the ship (eg hospital ship), or unplanned such as in the event of the recovery of personnel in a safety of life at sea incident. Irrespective of their knowledge, these people are expected to have no capacity to contribute to shipboard routines, fire-fighting and evacuation procedures or the use of safety equipment.

f. Apprehended persons – people held on board pending further investigation and/or action. These people may include potential illegal immigrants (PII) and persons suspected of criminal activity (eg drug trafficking) or non-sanctioned activities (eg unauthorised fishing).

6.5 Examples of the types of consequences associated with not achieving this Functional Objective can include:

a. capsized mission system due to overloading
b. harm to non-crew personnel where they are unable to evacuate due to unfamiliarity with the mission system layout.

6.6 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. impact on other operational requirements of the mission system as a result of having to accommodate non-crew, for example sea training group in the hangar which prevents flying operations
b. harm to personnel or the environment through a spread of communicative disease or pests through failure to provide appropriate quarantine capability.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.6

6.7 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

9 ANEP 77, Part 1, Chapter 1, Annex E Definitions and Abbreviations

10 United Nations Convention on the Law Of the Sea (UNCLOS), Article 98
6.8 Carriage of Non-crew Personnel is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.2 – Buoyancy, Trim and Stability and Seakeeping
b. ACCO 1.5 – Auxiliaries and Hotel Services
c. ACCO 1.7 – Survivability and Preservation of Life
d. ACCO 3.7 – Embarked and Deployable Sub-systems.

6.9 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

6.10 **Training** – education and skill development for non-crew personnel as well as for crew who may need to manage or support them. Consideration must be given to the training requirements for the groups of non-crew personnel who are most likely to be embarked on board the mission system. Training considerations include, but are not limited to:

a. the role expected of the non-crew personnel in the mission system’s operation, maintenance, safety and emergency evolutions
b. the role, capability and capacity of the crew in training, managing and supporting non-crew personnel
c. the timeliness of training and the familiarisation with shipboard layout, routines, safety equipment and evacuation procedures
d. communication considerations including language, signage (eg pictographs versus written word) etc.

6.11 **Mission System Capacity** - Consideration must be given to providing sufficient capacity (and the ability to sustain that capacity) for anticipated non-crew personnel (eg troop carriage, specialists in support of embarked subsystems, ships intended to carry PII etc). These requirements are to be identified within the operating and support intent (OSI).

6.12 There are however, many circumstances where it may be necessary to embark non-crew personnel at short notice and in excess of anticipated requirements (eg rescue at sea, emergency troop lift etc).

6.13 In all circumstances, non-crew personnel must be managed within mission system capacity constraints. Considerations must include, but are not limited to:

a. stability and trim including the requirement to take account of:
 (1) non-crew numbers
 (2) personal property
 (3) their location and possible on board movement (eg crowding and weight distribution etc)

b. emergency and evacuation equipment including access
c. habitability including food, potable water, sleeping space and personal hygiene requirements
d. protection from the elements including shelter from sun, sea (eg washed overboard), wind and rain etc.

6.14 **Health and Wellbeing** – for both crew (eg risk of communicable diseases) and non-crew personnel (eg treatment of pre-existing injuries). Considerations must include, but are not limited to:

a. providing medical and emergency care
b. preventing transmission of communicable diseases and the need for quarantine, isolation or separation
c. supporting mental well-being including preventing self-harm.

6.15 **Security** – of people, property, information etc. The embarkation of non-crew personnel may expose the mission system to security risks which may result in, for example, intimidation or physical harm to crew and other non-crew personnel, malicious damage, interference with operations, disclosure of classified information etc. Security considerations must include, but are not limited to:

a. surveillance measures, such as the search and monitoring of non-crew personnel
b. physical control measures, such as the separation and restraint of uncooperative or aggressive non-crew personnel
c. access control measures, such as exclusion of non-crew personnel from the internal areas of the mission system.

6.16 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

6.17 Further guidance for this Functional Objective is available at the [DSwMS website](http://drnet.defence.gov.au/Seaworthiness/Pages/DSwMS-Guidance.aspx).
CHAPTER 7

ACTIVITY AND CONDITION BASED COMPLIANCE
OBLIGATION 3.7 - EMBARKED AND DEPLOYABLE SUB-SYSTEMS

FUNCTIONAL OBJECTIVE

7.1 The Functional Objective of Activity and Condition Based Compliance Obligation (ACCO) 3.7 is defined as:

Provisions to integrate and utilise embarked and deployable sub-systems are established, monitored and maintained

OUTCOME

7.2 Embarked and deployable sub-systems are able to contribute as intended to achievement of the defined tasking, in accordance with the operating and support intent (OSI).

RATIONALE

7.3 Maritime mission systems very rarely achieve the specified operational effect without employing embarked and deployable sub-systems. Embarked and deployable sub-systems are therefore the norm rather than the exception for maritime operations, and in many circumstances provide the prime capability elements through which operational effect is realised.

7.4 In many instances, modern maritime mission systems must also be highly configurable to adapt to changing operational requirements and therefore frequently employ embarked and deployable sub-systems to enable this.

7.5 Embarked Sub-systems – are not organic to the mission system, but are required to perform specific activities in support of the defined tasking. Embarked sub-systems may include, but are not limited to:

a. hyperbaric chambers
b. hospital services
c. temporary accommodation and structures
d. intelligence and communication suites
e. sub-systems “fitted for but not with”.

7.6 Deployable Sub-systems – may or may not be organic to the mission system, but can be launched from the mission system and usually require recovery. Deployable sub-systems may include but are not limited to:

a. divers and special forces (when deployed from the mission system in conduct of the task)
b. remotely operated systems (tethered or untethered)
c. aircraft (manned or unmanned)
d. small craft
e. submersibles (manned or unmanned).
7.7 Consistent with Governance and Management Compliance Obligation (GMCO) 2.1 – Define Operating and Support Intent, a maritime mission system OSI may not sufficiently cover the operating intent and supportability requirements of embarked and deployable subsystems. In this case consideration should be given to the requirement for a specific OSI for the embarked and deployable subsystem.

7.8 Examples of the types of consequences associated with failing to achieve this Functional Objective can include:

a. failure to achieve the defined tasking due to inability to deploy an embarked sub-system
b. harm to personnel due to loss of a sub-system (e.g., capsizing of a RHIB on launch, ditching of an aircraft or loss of a manned submersible).

7.9 Examples of the types of consequences associated with achieving this Functional Objective can include:

a. impact on other operational requirements of the mission system as a result of the deployment of a system such as a towed array
b. harm to personnel due to fatigue issues as a result of failure to understand the concurrent resource demands of operating deployable sub-systems
c. legal non-compliance and potential harm to personnel where embarked systems prevent or hinder escape or evacuation
d. harm to the environment through waste management system overload as a result of the embarkation of additional accommodation modules.

REQUIREMENTS OF FUNCTIONAL OBJECTIVE 3.7

7.10 The requirements for this ACCO comprise the unique requirements described below and the common, unifying requirements specified at Volume 3, Part 0.

7.11 Embarked and Deployable Sub-systems is linked to other ACCOs but specifically requires consideration in conjunction with:

a. ACCO 1.1 – Structural Integrity
b. ACCO 1.2 – Buoyancy, Trim and Stability, and Seakeeping
c. ACCO 1.5 – Auxiliary Systems and Hotel Services
d. ACCO 1.8 – Communications
e. ACCO 2.2 – Situational Awareness
f. ACCO 2.3 – Berthing, Mooring, Anchoring and Towing
g. ACCO 3.1 – Tactical Awareness
h. ACCO 3.2 – Detectors
i. ACCO 3.3 – Effectors
j. ACCO 3.4 – Carriage and Handling of Loads
k. ACCO 3.5 – Carriage of Explosive Ordnance and Dangerous Goods
l. ACCO 3.6 – Carriage of Non-crew Personnel.
7.12 Consideration must be given to hazards and risks that may limit achievement of this Functional Objective, or which may be realised through achievement of this objective. Systems of control to address these hazards and risks should not in and of themselves create further hazards or risks to this or other Functional Objectives. For this Functional Objective, consideration must include but is not limited to the activities and conditions described below.

7.13 **Embarkation** – loading and off-loading of embarked and deployable sub-systems. This must be considered in context of ACCO 3.4 - Carriage and Handling of Loads, ACCO 3.5 - Carriage of Explosive Ordnance and Dangerous Goods and safe work practices for embarkation and debarkation at sea or alongside.

7.14 **Interfacing** – Interfaces are the specific points of interaction and connection between the sub-system and the maritime mission system. The mission system must have the ability to support the embarked sub-system in its contribution to the defined tasking. Considerations must include, but are not limited to:

a. compatibility and suitability of interfaces and supporting services (interoperability), such as:

 (1) fixings and couplings
 (2) utilities including electrical power, fuel, air, water etc
 (3) information transfer and management

b. capacity of the mission system to support and sustain the sub-system, such as:

 (1) specialist personnel
 (2) space and weight
 (3) structural suitability
 (4) utilities and waste
 (5) survivability and preservation of life provisions, for example inclusion of temporary accommodation may require additional life saving capability such as life rafts and life jackets
 (6) the cumulative and concurrent requirements or impacts of multiple embarked sub-systems.

7.15 **Storage** – In conjunction with interfacing above, sub-systems storage must take account of:

a. secure for sea requirements
b. escape and emergency routes
c. sub-system degradation, for example through exposure to the maritime environment
d. carriage of support and operating elements including spares and tools
e. the requirement to periodically conduct operability tests, particularly where the sub-system experiences extended durations of inactivity.

7.16 **Launch, Recovery and Handling** – For deployable sub-systems, the launch, recovery and on board handling usually requires specific procedures and equipment such as A frames for submersibles, Hiab cranes and cradles for small
boat handling, yellow train and RAST for aircraft etc. Considerations must include, but are not limited to:

a. dynamic interactions between the sub-system and the mission system including:
 (1) the effect of environmental conditions, for example wave heights and directions, wind speed etc
 (2) peak loads
 (3) effects on handling characteristics of the mission system and sub-system when operating in launch and recovery envelopes (eg speed differential, turbulence)

b. requirements for personnel rated (typically known as man rated) launch and recovery systems.

7.17 **Operation** – use of the embarked or deployable sub-system on, in or around the mission system. Considerations must include, but are not limited to:

a. prevailing environmental conditions
b. operating envelopes, for example avoiding interference or clashes
c. emissions including for example, exhaust, toxic gases and waste, radiation etc.

7.18 Specific consideration must also be given to:

a. Any impairment imposed by the embarked or deployable sub-system on the normal, essential and emergency functions of the mission system.
b. Any limitations the embarked or deployable sub-system poses on the OSI or tasking requirements of the mission system. For example, installation of temporary accommodation in a mission system hangar space may impede or prevent aviation operations.
c. Emergent requirements to embark sub-systems which were not considered in the earlier phases of the Capability Life Cycle. These may require review and amendment of the OSI in accordance with GMCOs 2.5 and 3.3.

7.19 Consideration must also be given to prescribed compliance requirements relevant to this ACCO. This may include specified statutory requirements, or Defence directed means of compliance (DMOC). The ODSwR maintains a register of statutory and other requirements relevant to the seaworthiness context (refer to guidance for further details).

GUIDANCE

7.20 Further guidance for this Functional Objective is available at the DSwMS website.\(^\text{12}\)

VOLUME 4: INDEPENDENT SEAWORTHINESS MANAGEMENT REVIEW

Contents

Part 1 Independent Seaworthiness Management Review
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
PART 1: INDEPENDENT SEAWORTHINESS MANAGEMENT REVIEW
CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>1–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Seaworthiness Management Review</td>
<td>1–1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1–1</td>
</tr>
<tr>
<td>Aim</td>
<td>1–1</td>
</tr>
<tr>
<td>Glossary</td>
<td>1–1</td>
</tr>
<tr>
<td>Authority of the ISwMR</td>
<td>1–1</td>
</tr>
<tr>
<td>Why Independent Seaworthiness Review?</td>
<td>1–1</td>
</tr>
<tr>
<td>Review Triggers</td>
<td>1–4</td>
</tr>
</tbody>
</table>
CHAPTER 1

INDEPENDENT SEAWORTHINESS MANAGEMENT REVIEW

Reference:

A. Defence Instruction Administrative Policy ME2 - Defence seaworthiness management system: Annex H-3

INTRODUCTION

1.1 The DSwA has established an Independent Seaworthiness Management Review (ISwMR) mechanism to provide independent advice on the governance and management of the Defence Seaworthiness Management System (DSwMS), specifically:

a. the ability of the DSwMS to deliver the Seaworthiness Outcome
b. the correctness of seaworthiness management regulation and practice in accordance with the DSwMS Manual
c. the effectiveness of the management of seaworthiness of ADF maritime mission systems.

AIM

1.2 This volume details the purpose, authority, role and scope of ISwMRs.

GLOSSARY

1.3 Definitions, acronyms and abbreviations relevant to the DSwMS Manual (DSwMSMAN) are located in the Glossary.

AUTHORITY OF THE ISWMR

1.4 Defence Instruction Administrative Policy ME2 authorises the DSwA to deliver and manage the Seaworthiness Outcome and provides the basis for the DSwA to convene ISwMR to review and provide advice on the seaworthiness management system.

WHY INDEPENDENT SEAWORTHINESS REVIEW?

1.5 The DSwMS is a Defence-imposed, thoroughly-designed management topography governed by a set of compliance obligations (regulations). In regards to the management of seaworthiness, Defence is a self-regulating organisation.

1.6 Self-regulation can assist in developing rules that are more responsive to complex issues, but there is a need to review self-regulating organisations.2 3

1.7 It is generally acknowledged\(^4\) that:

a. For self-regulation to be effective it needs to be properly integrated into the overall regulatory framework – that is, it needs to dovetail with the law and the regulator's policies – not repeating or confusing requirements, but assisting and possibly extending them in some areas. The regulator relies on self-regulatory schemes to cover many day-to-day issues that it would otherwise not have the capacity to deal with. If self-regulatory schemes are inconsistent with the underlying principles of the overall regulatory framework, or do not operate within the parameters clearly laid down by the law, then the fundamental purpose to be served by self-regulation may be defeated and welfare may be compromised.

b. Self-regulation must have vigorous and active accountability mechanisms. The old-style model for self-regulation of 'set and forget' is not viable going forward. If accountability is not in place, then the risk is not just that self-regulation will be ineffective, but that it may be harmful as the regulated and the regulator devote resources elsewhere on the assumption that self-regulation is working. If this occurs, the existence of self-regulation would be counter-productive.

1.8 The limitations of self-regulation include\(^5\):

a. it may lack credibility and public confidence

b. it may lack effective enforceability

c. it can be subject to 'regulatory capture' – that is, the regulated entities serve only the interests of the self-regulator and not the delivery of the outcome self-regulation seeks

d. it may prove to be 'fair-weather' regulation – in other words, regulation which is incapable of withstanding tough times, and which breaks down under stress such as when circumstances change, meaningful reforms are proposed, or conflicts of interest arise between the aims of Defence and self-regulatory objectives

e. the 'free-rider' problem – this may emerge when regulated entities choose not to properly adhere to the agreed rules.

1.9 The DSwMS Risk Management and Assurance Framework, based on the internationally recognised construct of the 'three lines of defence', is designed to mitigate the above limitations by defining appropriate levels of separation and 'independence' within the organisation. However, in this environment, for self-regulation to be effective, it is critical that a condition of review exists over the entire system. As noted by the former Deputy Chair of the Australian Securities and

\(^3\) Organisation for Economic Cooperation & Development, 23 March 2015

Investments Commission⁶, “to remain flexible, the self-regulatory scheme should be regularly and independently reviewed for efficiency and effectiveness. This [review] should involve input from all stakeholders.”

1.10 The autonomy and interdependence of regulated and regulatory entities inhibit control efforts, thereby affecting discovery, monitoring, investigation, and sanctioning; self-regulating organisations are plagued continuously by symbiotic interdependence. Independent review of both the regulator and regulated discounts (but does not delete) the effects of the autonomy and interdependence.⁷

THE INDEPENDENT SEAWORTHINESS MANAGEMENT REVIEW

1.11 An Independent Seaworthiness Management Review (ISwMR) is conducted to provide advice and recommendations to the DSwA. The review and the consequent advice is intended to provide the DSwA with information on:

a. the ability of the DSwMS as designed, implemented, and practised to deliver the Seaworthiness Outcome
b. the correctness of seaworthiness management regulation, implementation, and practice in accordance with the DSwMS Manual
c. the effectiveness of the management of seaworthiness of ADF maritime mission systems.

1.12 In all forms, the advice is required to support the DSwA in discharging the responsibility for assuring justified confidence in the achievement of the Seaworthiness Outcome.

REVIEW SCOPE

1.13 An ISwMR can be conducted into any aspect of the DSwMS by individuals engaged by the DSwA that are independent of the system (not a regulator and not regulated by the compliance obligations).

1.14 The DSwA will convene ISwMRs as required to assist in the formation of judgements on the ability, correctness, and effectiveness of the DSwMS across the Capability Life Cycle of maritime mission systems.

1.15 An ISwMR may be convened to review the management of seaworthiness in regards to:

a. the design of the DSwMS (Regulatory Framework and compliance obligations, Risk Management and Assurance Framework, and the Operating Model, as described in Volume 1, Part 1)
b. the behaviour and practice of the DSwR
c. the compliance strategies of the regulated Capability Managers

d. Capability Managers’ management of the seaworthiness of:
 (1) maritime mission systems to be introduced into service (the Future Fleet)
 (2) in-service maritime mission systems (the Fleet-in-Being)

e. maritime mission system support systems.

1.16 An ISwMR is to consider whether:

a. a comprehensive system of seaworthiness management has been defined and instituted, and meets the requirement of regulating for the management of seaworthiness

b. the system is being followed by practitioners at all levels of seaworthiness management and that they are demonstrating accountability for seaworthiness management

c. the system is effective, in that it is capable of reliably delivering the Seaworthiness Outcome and that confidence in those mission systems being and remaining seaworthy is justified

d. the system acknowledges, and adapts to, changes in the broader governance environment within which it operates

e. a measurement system is in use to assess the performance of the seaworthiness management and whether those measurements are utilised adequately to optimise DSwMS performance

f. the system of management is transparent to the Capability Manager

g. the system sufficiently captures any emergent risk to the delivery of the Seaworthiness Outcome, as the natural tendencies of steady state operation work to reduce the effort to continuously analyse and optimise system design and performance

h. the DSwMS design and implementation will deliver the Seaworthiness Outcome

i. the design, implementation and ongoing development of the DSwMS is adequate.

1.17 The scope of an ISwMR may be limited by the DSwA to those aspects that have been self-assessed as being likely to pose the greatest risks.

REVIEW TRIGGERS

1.18 An ISwMR program is promulgated annually by the DSwA. The program is developed and proposed by the ISwMR Panel Coordinator.

1.19 The following matters will be considered for inclusion in the ISwMR program:

j. DSwA deliberations on the advice provided as a consequence of ISwMRs

k. changes to DSwMS design and/or compliance obligations

l. changes in a Capability Manager’s compliance strategy

m. promulgation or change to the operating & support intent of a maritime mission system

n. planned introduction into service of a maritime mission system
o. changes to the support environment for maritime mission systems
p. Capability Manager complaints/concerns in regards to DSwR/ODSwR behaviour or practice
q. DSwR assessments of the management of seaworthiness that indicate non-compliant, poor, or deviant behaviour by a Capability Manager (or representative)
r. other matters as directed by the DSwA.

REVIEW CONDUCT

1.20 An ISwMR will convene in accordance with DSwA approved review program or as otherwise directed by the DSwA, and specified in formal notification advice.

1.21 An ISwMR is conducted by way of analysis and assessment of objective evidence sourced from the management system made by regulatory and regulated entities. Where required, regulatory or regulated entities may be required to provide input to supplement that which exists in the management systems.

1.22 An ISwMR will follow a three step process:

a. **Level 1.** Review objective evidence from the data and measurement tools utilised by the regulatory and regulated entities managing seaworthiness. The evidence to be reviewed will, in general, be identified by a Standard Information Review Set (SIRS) appropriate to the nature of the review.

b. **Level 2.** Where the analysis of the first level evidence identifies the need for further analysis of specific issues, relevant entities (regulatory or regulated) will be requested to respond to a request for information (RFI). The RFI may also be discussed in an informal review meeting with the Executives of the relevant entities (regulatory or regulated).

c. **Level 3.** Where analysis of the evidence collected at the first and second levels indicates unacceptable levels of risk or where the required advice is unable to be composed, relevant entities (regulatory or regulated) will be requested to attend a formal review meeting in order to answer questions, supplement information, or otherwise provide clarification to obviate uncertainty.

1.23 The SIRS provides a basis for consistent review but may not comprise the totality of information a Level 1 Review may consider. The SIRS must be promulgated, regularly revised, and updated as necessary to ensure that the ISwMR remains contemporary. SIRSs will be maintained for each category of Review (systemic, mission system – future force, mission system – force-in-being etc). SIRSs and any changes to them are to be approved by the Panel Coordinator.

1.24 Where an ISwMR requires information beyond Level 1, RFIs will be issued to relevant entities.

REVIEW OUTCOMES

1.25 The outcome of an ISwMR is advice to the DSwA relevant to the purpose of the Review. This advice can be formulated at the completion of any level of review when sufficient confidence exists. The advice is to be in written form per an ISwMR Report.
1.26 The ISwMR Report should explain what was observed, what was noteworthy, and what was of concern. Where concerns exist, recommendations as to remedies should be proffered, if that is within the competence of those conducting the review. The DSwA may convert these recommendations into Seaworthiness Corrective Actions (SCAs). Further guidance on SCAs is available in Volume 1, Part 1, Chapter 2.

REVIEWERS

1.27 An ISwMR will be conducted by at least two members assigned by the DSwA. Selection of members will be based on the nature of the ISwMR to be conducted.

1.28 A panel of members is to be formed from individuals appointed by the DSwA for the purpose of conducting an ISwMR. Membership of the Panel can comprise:

d. personnel of the Active Reserve Service with extensive experience in the governance and management of Defence maritime mission systems or maritime support systems

e. retired Senior Executive Service members of the Australian Public Service (APS) with extensive expertise in the fields of governance and management, technical, support, safety and/or environmental management practices and requirements.

1.29 The DSwA may appoint other members to participate in an ISwMR where the specific review expertise is not available in the Panel. This may include members from within and external to the Department of Defence.

1.30 Members of the Panel are to be:

f. independent of the DSwMS

g. have no vested interest in any entity, Government or Industry, involved in the delivery of the Seaworthiness Outcome where such involvement is or could be perceived to be a conflict of interest (per the conflict of interest instructions in the department).

1.31 Members are appointed to the Panel for a maximum of six years under a letter of appointment signed by the DSwA and relevant service-provider engagement arrangements.

1.32 Panel members are accountable for the advice they provide.

1.33 Panel members are authorised to:

a. access in-use seaworthiness management information (Level 1 Review)

b. call for information, and if necessary meet with executives, from across the Defence organisation (Level 2 Review)

c. require any entity to attend a review meeting (Level 3 Review).

1.34 An ISwMR Handbook is to be maintained to govern the ISwMR processes and practices, inclusive of how Panel members are assigned, the format of the RFI and ISwMR Report, the maintenance of the SIRS, and the management of ISwMR resources. The Handbook is to be presented to the DSwA for review and approval at intervals not exceeding 3 years.
ORGANISATIONAL RESPONSIBILITY

1.35 The ISwMR does not obviate the responsibility of the regulators and the regulated to manage the seaworthiness of maritime mission systems and immediately correcting shortcomings they have identified.

1.36 The DSwA requires that respondents to an ISwMR actively participate, are open and truthful, and provide complete disclosure of evidence.

ISWMR ADMINISTRATION

1.37 Support for the conduct of ISwMR is provided by the Panel Secretariat in the Office of the Defence Seaworthiness Regulator (ODSwR).

1.38 Resources for the conduct of ISwMR are assigned to the DSwR. Authority for the allocation and expenditure of resources rests with the ODSwR.
THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK
GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceptable means of compliance (AMOC)</td>
<td>A means of compliance presented against the compliance obligations and deemed acceptable by the DSwR. Notes:</td>
</tr>
<tr>
<td>Notes:</td>
<td>A means of compliance will be deemed acceptable where:</td>
</tr>
<tr>
<td></td>
<td>• the duty holder has demonstrated that it can be measured against the requirements of the regulation, and</td>
</tr>
<tr>
<td></td>
<td>• it was proposed by a suitably qualified and experienced person (SQEP).</td>
</tr>
<tr>
<td>ACCO</td>
<td>Activity and condition based compliance obligations, see definition below.</td>
</tr>
<tr>
<td>accountable official</td>
<td>A person(s) who has been authorised with a scope of decision rights over defined functions, activities, resources, outputs, outcomes etc; and who is answerable for decisions made or not made within their authorised scope.</td>
</tr>
<tr>
<td>Note:</td>
<td>• Decision rights may be delegated to others however the accountable authority remains answerable for the decisions made or not made within their authorised scope.</td>
</tr>
<tr>
<td>activity and condition based compliance obligations (ACCO)</td>
<td>Regulatory controls specifically directed at mission and enabling support systems. Activity and condition based compliance obligations (ACCOs) aim to ensure hazards and risks inherent in those systems are controlled in a manner that is systematic, coordinated and aligned with achievement of the Seaworthiness Outcome.</td>
</tr>
<tr>
<td>Note:</td>
<td>• It is a combination of activities and enabling conditions/system characteristics, and the functional performance of these, that determine the likelihood that the specified operational effect will be delivered. Where the functional performance of those activities and enabling conditions/characteristics is essential to delivering the specified operational effect, the associated hazards and risks must be identified and controlled if the likelihood of delivering that effect is to be maximised.</td>
</tr>
</tbody>
</table>
ACCO argument

If a mission system has systems of control designed to meet the ACCO Functional Objectives in the context of its OSI and it can demonstrate through these systems of control that:

- physical elements of a mission system are suitable (fit for purpose), reliable and supportable
- and personnel elements are competent in their roles and there are sufficient numbers to sustain the task
- and decision rights (including authorities and delegations) as applicable to achieving activities and tasks are understood and executed appropriately, and decisions are made by the authorised persons in a timely manner and executed effectively in accordance with the intent
- and appropriate security provisions to address vulnerabilities are established, monitored and maintained
- and all systems of control are implemented to a level of maturity that is appropriate and effective for the mission system, given its phase in the Capability Life Cycle (CLC)

Then it is reasonable to expect that the systems of control can act collectively to achieve the Seaworthiness Outcome.

Administration

In the international maritime context, the Government of the nation State whose flag the ship is entitled to fly is deemed the 'Administration'. The Australian Government is the Administration recognised by the United Nations under international law.

Notes:

- The Australian Constitution and the Administrative Arrangements Orders allocate responsibility for carrying out the functions of the Administration on behalf of the Australian Government. Responsibility for implementing and enforcing its international obligations is delegated to Departments and Agencies, for example the Australian Maritime Safety Authority and the Department of Agriculture, Water and Resources.

- The Australian Defence Organisation also performs some default functions on behalf of the Administration where the Australian Maritime Safety Authority does not have jurisdiction over Defence vessels.

- Also referred to as the Flag Administration or Flag State

AMOC

Acceptable means of compliance, see definition above.
assurance framework Aligns risk management and assurance accountabilities to those best placed to act.

Notes:
- Accountabilities are not based on chain of command but on functions, roles and responsibilities.
- Assurance provides supporting evidence to justify confidence that hazards and risks to the Seaworthiness Outcome are being effectively managed.

capability The power to achieve a desired operational effect in a nominated environment within a specified time and to sustain that effect for a designated period. Capability is delivered by systems that incorporate people, organisation, doctrine, collective training, platforms, material, facilities, in-service support and command and management.

capability life cycle (CLC) A capability system's whole of life, from initial identification of a need to its disposal.

Note:
- The four phases are: strategy and concepts; risk mitigation and requirements acquisition; and in-service and disposal.
- Transition is not an explicit phase within this CLC definition however, the DSwR regulates for the transition of knowledge and accountabilities into and out of the in-service phase through GMCO 2.4.
Capability Manager

A three star/band three officer who has responsibility for raising, training and sustaining their respective capabilities at the level of preparedness directed by SEC/CDF.

Notes:

- In relation to the delivery of new capability or enhancements to extant capabilities through the Defence Industrial Capability Plan (DICP), the CM is responsible for delivering agreed capability to the Government, within their Group or Service through coordination of the fundamental inputs to capability (FIC).

- The CMs are:
 - Chief of Navy (CN);
 - Chief of Army (CA);
 - Chief of Air Force (CAF); and
 - Deputy Secretary Strategic Policy and Intelligence (DEPSEC SP&I).

- In the DSwMS context other duty holders may be deemed by the Defence Seaworthiness Authority as being 'Capability Managers' for the purpose of developing a compliance strategy against the DSwMS compliance obligations. This will occur where organisations manage maritime mission systems outside the remit of those capability managers identified above, for example: DSTG, JCG etc.

certification

The process of officially recognising that organisations, individuals, materiel or systems meet defined standards or criteria.

Note:

- In the context of military forces, the hierarchical relationship in logical sequence is: assessment, analysis, evaluation, validation and certification.

CLC

Capability Life Cycle, see definition above.

compliance obligations

See DSwMS compliance obligations.

compliance self-assessment

Conducting a self-assessment against the GMCOs – an analysis of where current activities align with the Defence Seaworthiness Management System compliance obligations to identify gaps and overlaps.

control

A measure taken to eliminate a risk or, if that is not possible, to minimise the risk so far as is reasonably practicable. Eliminating a hazard will also eliminate any risks associated with that hazard.
control maturity The degree of control/system of control development and functionality.

collection effectiveness The question of whether or not the controls are operating as intended. A system of controls cannot be effective unless it is adequate.

Note:
- Effectiveness of risk management, control, and governance processes is present if processes are operating in a manner that provides reasonable assurance that the organisation's objectives and goals will be achieved.

Defence risk materiality thresholds Specific consequences that, if reached, mean that the risk needs to be made visible at particular decision-making levels.

This is set on behalf of SEC/CDF through Defence Enterprise Governance Branch.

defined tasking What a mission system will do ie Strategic requirements are translated into operational and tactical plans that govern what a maritime mission system 'will do' over the immediate time horizon (generally two years).

directed means of compliance (DMOC) A particular solution directed by the DSwr to be used. A DMOC may be issued:
- in response to prescribed legislation
- where Defence direction is provided from other third-line-of-defence policy owners, or
- in cases where the Regulator is satisfied that only a particular solution will provide the required level of hazard and risk control. In this case, such DMOC are expected to be the exception.

DMOC Directed means of compliance, see definition above.

DSwr Defence Seaworthiness Authority

DSwMS Defence Seaworthiness Management System

DSwMSMAN DSwMS Manual
DSwMS compliance obligations

Outcome-focused, goal-based function and performance requirements which must be satisfied to build confidence that hazards and risks to the Seaworthiness Outcome are being controlled.

Note:

- DSwMS compliance obligations can be categorised as follows:
 - activity and condition based compliance obligations (see separate definition)
 - governance and management compliance obligations (see separate definition).

DSwR

Defence Seaworthiness Regulator
due diligence

Applying a level of judgement, care, prudence, determination, mindfulness or activity a person would reasonably be expected to apply in particular circumstances.

The standard applied to determine whether the steps taken or things done by the person in a given situation are considered due diligence is what an objective person would judge as being reasonable in that situation.

Note:
- There are specific legal definitions under the WHS Act and the EPBC Act.
- In a Defence context, due diligence can be considered the application of a systematic approach to risk management that minimises exposure to risk - both for the outputs of the Defence enterprise and for its personnel (all of whom are, effectively, risk management practitioners).
- In the DSwMS context, due diligence includes taking reasonable steps to:
 - acquire and keep up to date knowledge of matters relevant to the achievement of the Seaworthiness Outcome
 - gain an understanding of the nature of both operational activities and non-operational activities controlled or undertaken, including an appropriately detailed understanding of the hazards and risks associated with those activities
 - ensure that Defence personnel (and, where applicable, consultants / contractors / outsourced service providers) at all levels have available for use, and make use of, appropriate resources and processes to eliminate or minimise risks associated with work carried out as part of those activities
 - ensure that the chain of command and other relevant authorities have appropriate processes for receiving and considering information regarding incidents, hazards and risks and responding in a timely way to that information
 - ensure that all relevant elements of the Defence enterprise have, and implement, processes for complying with any duty or obligation arising from a DSwMS compliance obligation
 - verify the provision and use of the resources and processes as described above.
duty holder

A person who is identified in legislation or a compliance obligation as having an obligation to comply with a requirement.

Notes:

- A duty holder is not necessarily an individual eg Defence has safety obligations under the *WHS Act 2011* but compliance will be carried out by people within the organisation.

- Duty holders under the DSwMS may include entities other than Defence personnel - for example, persons associated with the Australian Defence Force Cadets (a personal development program for young people).

- In some circumstances, multiple duty holders may share obligations arising from a particular DSwMS compliance obligation. They are required to collaborate to comply.

For DSwMS purposes, the 'levels' of duty holder (associated with the ‘three lines of defence’ concept – see Volume 1, Part 1, Chapter 4, Figure 4-1) are:

- level 1 – duty holders best placed to act on localised and major hazards/risks and controls
- level 2 – duty holders best placed to act on systemic hazards/risks and systems of control
- level 3 – duty holders at the enterprise level; best placed to act on strategic and systemic hazards/risks and systems of control.

ED ODSwR

Executive Director, Office of Defence Seaworthiness Regulator

ensign

A flag indicating nationality or state of registration.
fit for purpose The realised system can be reasonably expected to achieve the intended purpose.

Notes:
• The intended purpose must be understood by those who specify, design, realise and utilise the system.
• The system must achieve the purpose in a manner where hazards and risks - to personnel, the general public, the environment, other systems, etc - have been eliminated or, where elimination is not practicable, minimised SFARP.
• Systems may include, but are not limited to:
 — systems of work, including processes and activities (eg OIP)
 — materiel systems
 — management systems
 — information systems
 — training systems
 — logistics systems.

Flag Administration An alternative name for ‘Administration' in the international maritime law context.

Flag State An alternative name for 'Administration' in the international maritime law context.

functional objective The outcome achieved through a function.

Notes:
• The functional objectives collectively sum to deliver the goals which in turn sum to deliver the aim (the Seaworthiness Outcome).

governance and management compliance obligations (GMCO) Regulatory controls specifically directed at governance and management functions and activities across the capability lifecycle (CLC). GMCOs aim to ensure the functions and activities are performed in a manner that is systematic, co-ordinated and aligned with achievement of the Seaworthiness Outcome.

At the second line of defence (LoD) the GMCOs act on governance and management systems to ensure they satisfy DSwMS performance requirements for control of hazards and risks to the achievement of the Seaworthiness Outcome. The GMCOs are designed to ensure the functions and activities are performed in a manner that is systematic, coordinated and aligned with achievement of the Seaworthiness Outcome.
<table>
<thead>
<tr>
<th>DSwMSMAN</th>
<th>Independent Seaworthiness Management Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-service</td>
<td>A phase in the capability life cycle. The capability is being used or operated.</td>
</tr>
<tr>
<td>justified confidence</td>
<td>In the context of a seaworthiness judgement or decision, requires that the judgement or decision:</td>
</tr>
<tr>
<td></td>
<td>• be made on the basis of all pertinent information available</td>
</tr>
<tr>
<td></td>
<td>• consider both its short- and long-term seaworthiness implications</td>
</tr>
<tr>
<td></td>
<td>• consider the operational effect, safety and environmental aspects of the Seaworthiness Outcome</td>
</tr>
<tr>
<td></td>
<td>• be able to be justified to any subsequent Defence or external review.</td>
</tr>
<tr>
<td>lines of defence (LoD)</td>
<td>The DSwMS assurance framework uses a 'three lines of defence' model.</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The first line of defence (1LoD) is aligned to where hazards and risks manifest.</td>
</tr>
<tr>
<td></td>
<td>• The second line of defence (2LoD) is aligned to those accountable for governing and managing the first line (including provision of supporting systems).</td>
</tr>
<tr>
<td></td>
<td>• The third line of defence (3LoD) is aligned to the enterprise-wide level (for whole-of-enterprise governance and strategic guidance).</td>
</tr>
<tr>
<td></td>
<td>• The model is described in detail in Volume 1, Part 2, Chapter 4 of the Defence Seaworthiness Management System Manual (DSwMSMAN).</td>
</tr>
<tr>
<td>localised (contained) conditions/events and associated risks</td>
<td>DSwMS characterisation of conditions/events and associated risks that are of low consequence in enterprise terms, but relatively high probability. Foreseeable with controls derived using suitably qualified and experienced personnel.</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Examples include conditions/events/risks relating to:</td>
</tr>
<tr>
<td></td>
<td>— outputs/artefacts supporting capability management but not central to the Seaworthiness Outcome (artefacts not directly controlled by regulation)</td>
</tr>
<tr>
<td></td>
<td>— small scale (tactical/operational) activities relating to day-to-day work, eg tool/machinery/plant operation and maintenance, general seamanship, etc.</td>
</tr>
<tr>
<td>LoD</td>
<td>The three lines of defence, see definition above.</td>
</tr>
</tbody>
</table>
DSwMS characterisation of conditions/events and associated risks that are of high consequence in enterprise terms, but low probability. Foreseeable with controls derived using specialist techniques and subject matter experts.

Notes:
- Examples include conditions/events/risks relating to:
 - activities and related outputs/artefacts supporting capability management and central to the Seaworthiness Outcome (capability management activities and outputs/artefacts controlled by regulation, eg the capability manager's operating and support intent)
 - functions and performance of a maritime mission system and/or its enabling support system that are critical to the Seaworthiness Outcome and are, therefore, controlled by regulation – eg platform design characteristics, operating and support criteria (stability, hull integrity, navigation and collision avoidance, aviation operations and critical interoperability, etc).

Means of compliance (MOC)
A documented explanation of how compliance with the GMCOs and ACCOs is intended to be achieved. There are three types:
- acceptable means of compliance (AMOC)
- directed means of compliance (DMOC)
- proposed means of compliance (PMOC).

Mission system
The element of the capability that directly performs the operational function.

Notes:
- Examples include:
 - ship, tank or aircraft
 - distributed systems (eg communications network)
 - discrete systems that integrate into other mission systems (eg a radar upgrade for a platform).
- Major support system components (such as simulators, automatic test equipment and logistic information management systems) could also be classified as mission systems if the level of management attention to be applied to these components warranted this classification.

For the purposes of the DSwMS, the term mission system excludes major support system components.

MOC
Means of compliance, see definition above.
The operating intent and support intent are collectively referred to as the Capability Manager’s OSI.

The operating intent is generated from a strategic view of the operational effect(s) a maritime mission system may need to achieve, or contribute to, throughout its in-service phase. It is an articulation of what Defence expects, or ‘wants’, a maritime mission system to be able to do.

The support intent is the Capability Manager’s definition of what is required to support the achievement of the operating intent and must evolve, in concert with the operating intent, throughout the CLC. A maritime mission system is enabled through its support system, which is defined and resourced throughout the CLC. Without a suitable, maintained support system, the likelihood of achieving the specified operational effect is significantly reduced (ie is not maximised).

person conducting a business or undertaking (PCBU)

A duty holder under the WHS Act 2011 (section 5).

plant

Includes:

• any machinery, equipment, appliance, container, implement and tool
• any component of any of those things
• anything fitted or connected to any of those things.

PMOC

Proposed means of compliance, see definition below.

PPE

personal protective equipment
proposed means of compliance (PMOC) A way to comply with one or more DSwMS compliance obligations proposed, by the regulated, to the DSwR.

Note:
- In developing a proposed means of compliance, the regulated seek to meet the relevant DSwMS compliance obligation(s) in the manner most appropriate to their context and circumstances.

realise To make real, or give reality to a capability.

reasonably practicable For the purposes of the DSwMS and this manual, reasonably practicable means that which is, or was at a particular time, reasonably able to be done in relation to meeting the requirements of a DSwMS compliance obligation.

Notes:
- The DSwMS basis for assessing what is reasonably practicable considers the role of 'good practice' as a start point (as described in the DSwMS approach to risk management – refer Volume 1, Chapter 4)
- reasonably practicable in relation to a duty to ensure health and safety is defined in section 18 of the WHS Act 2011.
- Other legislation explicitly and implicitly sets the standard of reasonableness to be applied in their contexts.
- The DSwMS approach to applying the concept of reasonably practicable, including worked examples, is at the DSwMS website.¹

regulated Duty holders in the first and second lines of defence constitute 'the regulated'.

regulation The application of controls to ensure compliance with non-discretionary standards (eg laws, statutes, regulations and essential conditions - collectively, compliance obligations) prescribed by an approved authority. The elements and characteristics of regulation are:

- an independent authority (the regulator)
- an agreed regulatory approach (eg risk based regulation, compliance based regulation, or combination of these)
- a set of regulatory requirements (eg performance based regulations, compliance regulations, or combination of these)
- an agreed compliance assurance approach (eg independent oversight, self-administration, third party, or combination of these)
- enforcement mechanisms (graded intervention, targeted intervention, formal sanctions, or combination of these).

risk management Understanding the context and in that context identifying, analysing, communicating and responding to risks to support achievement of the objective.

Note:

- For further information see ISO 31000 series.
- See also the WHS Act 2011 for information specific to safety risks.

SCA Seaworthiness corrective action, see definition below.

seaworthiness (noun) See Seaworthy.
Seaworthiness Argument

An expression, in a formal logic format, of the concepts underpinning the Defence approach to seaworthiness:

If:

a) the specified operational effect is interpreted, defined and formally articulated by the Capability Manager through an operating and support intent (OSI)

b) and the design and OSI remain aligned and understood throughout the CLC

c) and a maritime mission system and its enabling support system are realised such that hazards/risks to personnel, the public and the environment are eliminated, or where elimination is not practicable minimised so far as is reasonably practicable, in the context of the OSI

d) and all defined taskings can occur within the boundaries of the OSI (ie within the boundaries of realised systems when operated and supported as intended)

then the likelihood of achieving the specified operational effect is maximised for the defined tasking(s) and hazards and risks to safety and the environment are eliminated or, where elimination is not practicable, minimised SFARP (ie the Seaworthiness Outcome is achieved).

Note 1: the Seaworthiness Argument is a formal logic expression which traces to the Seaworthiness Outcome. Thus the compliance obligations (regulations) address each condition of the Seaworthiness Argument such that, if the requirements of the regulations are met (through a compliance strategy and associated assurance) it can be reasonably expected that the Seaworthiness Outcome has been achieved and that any associated maritime mission system covered by such a compliance strategy can be deemed seaworthy.

Note 2: GMCO Goal 1 establishes the organisational requirements to enable the conditions of the Seaworthiness Argument a through d to be met. GMCO Goal 2 and the ACCOs address conditions a, b and c of the Seaworthiness Argument and GMCO Goal 3 address condition d of the argument. Thus compliance with the requirements of the compliance obligations, along with associated assurance activities, constitutes an argument that the Seaworthiness Outcome has been achieved.

Note 3: The ACCO argument is a subset of the Seaworthiness Argument that demonstrates where systems of control address the unifying requirements for each ACCO, these will act collectively to control for hazards and risks inherent in a given mission system.
seaworthiness case A body of information which together provides the context, claims, arguments and evidence necessary to support seaworthiness judgments relating to a maritime mission system and its enabling support system. In the context of the DSwMS operating model:

- the claim of a ‘seaworthy maritime mission system’ is made and argued through the compliance strategy developed through Process 2 – Develop and Maintain Compliance Strategy;
- the evidence is provided through the assurance activities conducted in Process 3 – Develop Assurance Plan (Regulated) and Process 5 – Provide Assurance (Regulated).

Note: Seaworthiness case documents include:
- the capability manager’s operating and support intent (OSI)
- compliance strategy and related artefacts
- assurance plan and related artefacts.

Notes:
- The OSI provides context specific to the mission system and its enabling support system.
- The compliance strategy and related artefacts provide additional context, as well as an argument in the form of claims and proposed evidence.
- The assurance plan and related artefacts provide the actual evidence in support of the claims and related argument.

seaworthiness corrective action (SCA) SCAs are a mechanism that can be used by the DSwA to provide notice to the regulated community to:

a) Rectify a specific non-compliance with the DSwMS.

b) Rectify or improve a means of compliance (MOC) where it has been proven less effective than anticipated. The requirement for this type of SCA will typically be identified through assurance and trend analysis. This type of SCA is provided to assist the regulated community in the improvement of hazard and risk controls in the context of the Seaworthiness Outcome.
seaworthiness incident
An occurrence or event adversely impacting, or potentially impacting, the achievement of the Seaworthiness Outcome.

Notes:
• Includes incidents of an emergency nature, not all of them foreseeable, that require sudden and urgent action.
• Seaworthiness incidents may arise accidentally, or as the result of deliberate action (e.g., by disaffected persons, terrorists, enemy forces).
• See also notifiable incident and dangerous incident; these terms have specific meanings under the *Work Health and Safety Act 2011*.

Seaworthiness Outcome
That the operation of a maritime mission system, in accordance with its Capability Manager’s operating and support intent and enabled by its support system:
• maximises the likelihood of achieving the specified operational effect for the defined tasking, where
• efforts have been made to eliminate or minimise so far as is reasonably practicable (SFARP), hazards/risks to personnel, the public and the environment.

Seaworthy (adjective)
The characteristic of a maritime mission system where it is operated and supported in accordance with a Capability Manager’s authorised operating and support intent, such that the likelihood of achieving a specified operational effect for a defined tasking is maximised and hazards and risks to personnel, the public and the environment have been eliminated or minimised SFARP (i.e., the characteristic of a maritime mission system resulting from achievement of the Seaworthiness Outcome). A mission system can be recognised as being seaworthy where it can be demonstrated that the conditions of the Seaworthiness Argument, as they pertain to that mission system, have been met (see Seaworthiness Argument).

SFARP
So far as is reasonably practicable, see definition of ‘reasonably practicable’.

subject matter expert (SME)
A person with a high degree of knowledge and competency pertaining to a particular subject/technology/discipline.
suitably qualified and experienced person[nel] (SQEP) An individual who has the requisite qualifications, training and experience to competently carry out, or supervise, tasks associated with an operation or activity.

Notes:

• The SQEP requirements (qualifications, training, level of experience) for a particular task must be defined by the appropriate duty holder.

• Qualifications must be current (in date) when a task/activity is performed.

unifying artefacts Those artefacts that are central to management for the Seaworthiness Outcome, comprising specific regulated artefacts (eg the OSI), and other artefacts agreed between the regulator and the regulated within a specific compliance strategy (eg formal safety assessments).

These are known as 'unifying' artefacts because they are a central reference for duty holders across (and beyond) Defence and throughout the capability life cycle as a basis for the conduct of seaworthiness management.